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Abstract

Obstructive sleep apnea (OSA) is a substantial health
risk often associated with severe cardiovascular diseases,
yet it frequently goes undiagnosed by the prohibitive cost
of gold standard’s polysomnography. This study aims to
improve OSA detection by comparing traditional machine
learning (ML) methods with a modern deep learning (DL)
approach based on AlexNet, specifically those utilizing re-
currence quantification analysis (RQA) and general recur-
rence plots (GRPs) in heart rate variability (HRV). Pub-
licly available PhysioNet databases were used, with ECG
recordings divided into one-minute intervals. Following
TRIPOD guidelines, the results show that the employed DL
model outperforms traditional ML models in terms of over-
all accuracy. More importantly, the AlexNet-based model
achieves a better balance between sensitivity and speci-
ficity compared to standard classifiers. This study empha-
sizes DL’s potential in enhancing OSA detection through
HRV analysis with RQA and GRPs, advancing research in
this crucial healthcare area.

1. Introduction

Obstructive sleep apnea (OSA) is a sleep disorder
characterized by repeated breathing interruptions during
sleep [1]. Its prevalence varies widely, estimated between
9% and 38% in the general population [2]. OSA can lead to
daytime drowsiness, impaired work performance, psycho-
logical issues, and severe accidents [3]. Furthermore, OSA
is often underdiagnosed, especially in individuals with car-
diovascular diseases (CVD), with reported rates exceeding
90%[4]. Given the strong correlation between OSA and
CVD [5], the early detection of this condition is crucial [6].

Polysomnography (PSG) is the current gold standard for
OSA diagnosis but is resource-intensive and highly un-
comfortable [7]. PSG also requires clinical experts, lim-
iting its availability and exacerbating the OSA detection
challenge [8].

Consequently, researchers have explored alternatives to

address PSG’s limitations [9]. Particularly, the heart rate
variability (HRV) analysis has emerged as a promising
tool [6], reflecting autonomic nervous system activity,
which is related to respiratory control [10]. In this re-
gard, HRV extracted from single-lead electrocardiograms
(ECG) has shown superiority over other kinds of mea-
sures[11, 12].

In the context of HRV-based methods, various works
have dealt with OSA detection from several perspec-
tives [13–19]. More precisely, recurrence plots (RP), a
complexity-related tool [20], have been integrated with tra-
ditional machine learning (ML) classifiers [21, 22]. How-
ever, RP-based features have limitations, such as the dis-
tance threshold, focusing on a specific level of recurrence.
The general recurrence plot (GRP) instead offers a holis-
tic perspective across all recurrence levels, becoming the
main interest of the present study [20].

Modern deep learning (DL) approaches have shown ad-
vancements in accurately distinguishing between normal
and apneic episodes [6]. However, research exploring the
synergy of GRP and DL in OSA detection remains scarce,
especially when compared to single-lead ECG-based mod-
els. This scarcity underscores the opportunity for a more
in-depth analysis into the capabilities of GRP and DL-
based methodologies. Thus, in this study, we present an
experimental proposal focused on these novel aspects, em-
phasizing their advantages over traditional ML methods.

2. Methodology

2.1. Databases

This study has employed three publicly available
databases obtained from PhysioNet’s repository: the CinC
Challenge 2000 (Apnea-ECG) [23], the MIT Polysomno-
graphic Database (MIT-BIH)[24], and the St. Vincent’s
University Hospital/University College of Dublin (UCD-
DB) [25]. These databases contain multiple ECG record-
ings, each with different apneic annotations.

The Apnea-ECG database comprises 70 ECG record-
ings, ranging from 7 to 9 hours in length, collected from



30 male and 5 female subjects aged between 27 and 63
years. This database includes minute-by-minute annota-
tions by clinical experts, categorizing each minute of the
ECG recording as either an apneic episode (A-labeled) or
a normal episode (N-labeled).

The MIT-BIH database comprises 18 PSG recordings
with durations ranging from 2 to 7 hours, obtained from
16 male subjects aged between 32 and 56 years. Similar to
the Apnea-ECG database, clinical experts provided anno-
tations, but these were assigned every 30 seconds.

Lastly, the UCD-DB consists of 25 full overnight PSG
recordings from 21 male and 4 female subjects aged be-
tween 28 and 68 years. Real-time single-lead ECG anno-
tations were made following the Rechtschaffen and Kales
rules, identifying various cardiorespiratory events in addi-
tion to apnea episodes.

To ensure uniformity in annotation criteria, all databases
were adapted to the time resolution of the less detailed one,
which is Apnea-ECG. Specifically, the MIT-BIH database
was re-labeled by aligning annotations with the original
labels every two blocks of 30 seconds, while the UCB-
DB was re-labeled on a minute-by-minute basis. This ap-
proach harmonized the annotations across all databases.

2.2. Signal processing

The ECG recordings were resampled to 500 Hz for im-
proved R-peak detection. To reduce noise, a second-order
Chebyshev filter with a 100 Hz cutoff was applied, and
a 0.5 Hz cutoff filtered low-frequency interference and
base-line wandering. Both filters maintained the signal’s
phase and amplitude, preserving core features. The Pan-
Tompkins algorithm was applied to detect R-peaks, and a
sliding R-peak correction window accommodated missed
peaks. ECG recordings were segmented into 1-minute
intervals for HRV analysis. Eventually, a manual signal
screening was performed to remove noisy segments, leav-
ing more than 40,000 ECG segments, or approximately
680 hours of data.

2.3. Recurrence Analysis

The RP is a non-linear data analysis technique that vi-
sualizes the instances when a dynamical system’s trajec-
tory revisits the same phase space area [26]. It creates
a binary matrix with black and white dots based on the
pairwise distance between states in the phase space trajec-
tory, compared to a specified threshold (ϵ). The time series
(s(n) = s(1), s(2), . . . , s(N)) is embedded into an m-
dimensional space using Taken’s time delay theorem [27],
resulting in state vectors x⃗i. Then, the recurrence matrix
or RP (R(i, j)) can be defined as:

R(i, j) =

{
1 if ∥x⃗i − x⃗j∥ ≤ ϵ,

0 otherwise,
(1)

The RP is visually represented with black dots for re-
current points ∥x⃗i − x⃗j∥ ≤ ϵ and white dots otherwise.
Features were extracted from RP (ϵ = 0.5) constituting re-
currence quantification analysis (RQA) [28], including re-
currence rate, determinism, Shannon entropy, average di-
agonal line length, and divergence [29].

Without applying a threshold, the distance matrix, also
referred to as the general recurrence plot (GRP), offers
a continuous representation of recurrence. False nearest
neighbors (FNN) and average mutual information (AMI)
algorithms [30] were used to reconstruct the HRV phase
space with m = 3 and τ = 2.

2.4. Machine Learning Classifiers

On the one hand, multiple traditional ML algorithms
were employed, such as support vector machine (SVM), k-
nearest neighbors (KNN), and decision tree (TREE). SVM
used a Gaussian radial basis function kernel, KNN utilized
the Euclidean distance method, and TREE followed CART
principles. All models used the same set of features ex-
tracted from the HRV’s RP.

On the other hand, the AlexNet architecture was em-
ployed, accepting GRP representations of 227 × 227 × 3
pixels. The pre-trained network parameters included learn-
ing rate, epoch, mini-batch size, and the adaptive moment
estimation (ADAM) optimizer [6]. Training parameters
included a learning rate of 0.001, 10 epochs, and a mini-
batch size of 128.

2.5. Performance Assessment

Models were evaluated using accuracy (Ac), sensitivity
(Se), and specificity (Sp). Testing followed a standard-
ized framework, training models on balanced MIT-BIH
and UCD-DB databases and testing on Apnea-ECG. This
approach enabled obtaining results with reduced bias and
adhered to the transparent reporting of a multivariable pre-
diction model for individual prognosis or diagnosis (TRI-
POD) guidelines [31].

3. Results

In the presented results (Table 1), the performance met-
rics for various classification models were assessed. The
SVM exhibited an Ac of 67.13%, with a Se of 22.95% and
Sp of 86.6%. The KNN model achieved an accuracy of
62.29%, with Se and Sp values of 37.21% and 73.37%,
respectively. The TREE model yielded an Ac of 59.20%,
with a Se of 43.23% and specificity of 66.27%. The DL



model, AlexNet, displayed the highest Ac among the mod-
els, recording 71.30%, along with a Se of 58.95% and Sp
of 76.76%.

Table 1: Table of results.

Model Ac (%) Se (%) Sp (%)
SVM 67.13 22.95 86.6
KNN 62.29 37.21 73.37
TREE 59.20 43.23 66.27
AlexNet 71.30 58.95 76.76

4. Discussion

Among the conventional ML models, SVM demon-
strated a considerable Sp but struggled with Se. Further-
more, KNN achieved a more balanced trade-off between
Se and Sp, while TREE excelled in Sp but lagged behind
in Se. In contrast, AlexNet have outperformed all other
models in terms of Ac while maintaining a good balance
between Se and Sp.

The above observations imply that the tested DL-based
model exhibits strong performance for accurate OSA de-
tection through the analysis of HRV using GRP. The com-
bination of HRV features and recurrence analysis offers a
distinctive, with AlexNet emerging as the leader in both
Ac and Se, positioning it as a valuable tool for early OSA
detection. Generally, ML-based classifiers may struggle
to achieve a balance between Se and Sp values compared
to DL-based classifiers due to their reliance on the chosen
feature extraction strategy. While ML models require hu-
man intervention in feature extraction, DL models have the
inherent capability to extract previously unidentified fea-
tures from input data, thus enhancing classification Ac by
prioritizing the features that contribute most to the input
data.

It is important to highlight that these results have un-
dergone rigorous validation procedures in accordance with
the TRIPOD guidelines [31]. Diverging from overly op-
timistic outcomes obtained with cross-validation frame-
works, the models in the present study underwent training
on two distinct databases and were subsequently tested on
a third one, ensuring robust and clinically relevant perfor-
mance assessment. Nevertheless, further research and val-
idation efforts are imperative to fully harness the potential
of these models in real-world clinical applications.

5. Conclusions

The present study emphasizes the potential of pre-
trained deep learning architectures like AlexNet, in detect-
ing obstructive sleep apnea (OSA) through heart rate vari-

ability analysis with general recurrence plots. Rigorous
validation and superior sensitivity highlights their value
in improving OSA detection in episodes of one minute-
length, addressing a significant public health concern.
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[28] Martı́n-González S, Navarro-Mesa JL, Juliá-Serdá G,
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