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Abstract

Patients undergoing cardiopulmonary ressuscitation
(CPR) may respond through rhythm transitions between
different rhythms ventricular fibrillation (VF), ventricular
tachycardia (VT), asystole (AS), pulseless electrical ac-
tivity (PEA) and pulse generating rhythm (PR). Rhythm
recognition is crucial to address adequate resuscitation ef-
forts, and in this study we applied a deep neural network
to classify ECG rhythms during cardiac arrest.

Artifact-free four second segments were extracted from
100 patients in out-of-hospital cardiac arrest. A convolu-
tional neural network (CNN) was trained to discriminate
between five cardiac arrest rhytm types. Experiments were
conducted with increasing number of layers. For each
model, training was repeated 10 times to explore varia-
tions in the results.

A five layer network provided the best performance with
an accuracy of 80.3 (78.1,81.3)% (median(25th,75th quar-
tiles)).

We have proposed a deep learning approach to auto-
matically recognise five cardiac arrest rhythms common
during resuscitation.

1. Introduction

During resuscitation of out-of-hospital cardiopulmonary
arrest (OHCA), the patient is treated with chest compres-
sions, ventilations and electroshock. Efficient data analysis
of data from OHCA can help understanding the relation-
ship between therapy and patient response. This knowl-
edge can help us to improve the quality of the therapy, thus

increasing the likelihood of survival [1].
Among the subsidary goals to improve efficiency our

group and collaborators are working on, is the develop-
ment of systems for automatic chest compression and ven-
tilation detection, shock outcome prediction, compression
artifact removal and rhythm interpretation. In our previ-
ous work on rhythm classification an approach with hand-
crafted features and various machine learning approaches
were studied[2–4].

Patients undergoing CPR will respond through rhythm
transitions between ventricular fibrillation (VF), ventric-
ular tachycardia (VT), asystole (AS), pulseless electrical
activity (PEA) and pulse generating rhythm (PR) as illus-
trated in figure 1.

In this work we address rhythm interpretation with the
aim to recognise the five rhythm types applying deep neu-
ral networks on the electrocardiogram (ECG) recorded
during resuscitation.

2. Materials and Methods

The data originates from a study on quality in car-
diopulmonary resuscitation (CPR) from the period be-
tween March 2002 and September 2004). A subset of the
data collected from the original study[1, 5] are used in this
project. Only the ECG signals, annotatated for rhythm, is
used. The signal was downsampled by a factor of two to
250 Hz. Four second segments of ECG without artifacts
from CPR were collected from 100 different patients. This
totals to 2833 segments containing 423 AS, 912 PEA, 689
PR, 643 VF and 166 VT [6].

The dataset was split into training, test and validation



Figure 1: Cardiac rhythms from resuscitation: (a) ASY, (b)
PEA, (c) PR, (d) VF, (e) VT.

sets in a stratified manner with 2281, 256 and 296 cuts
respectively.

In this study, experiments are conducted to design a
one-dimensional convolutional neural network (CNN) to
extract features to classify the heart rhythms. A densely
connected neural network classifier is attached to the CNN
based feature extractor.

The filter kernel is used in the convolution of the input
signals. The input signal will be longer than the output
signal, so zero padding can be used to get equal lenghth on
input and output. This can maintain the information at the
boundaries and possibly increase the performance[7].

Pooling reduces the size of the output signal so we get
a feature representation that is less sensitive to localisation
of events in the input signal.. Pooling can be done in sev-
eral manners - average and max pooling. Average pooling
calculates the average value of the feature representation.
Max pooling, on the other hand, calculates the maximum
value[8].

A preliminary study was conducted, running with only
one repetition for each training. The results from this study
concluded that zero padding to the input should be used,
and pooling at the end of each CNN-layer. It was also
found that it was beneficial to gradually increase the num-

ber of filters for layers deeper into the model.
We have used this setup, repeating each model, for one

to six layers, training and testing 10 times. For each model
performance is measured in terms of total accuracy (tAcc),
sensitivity (Se), specificity (Sp) and positive predictive
value (PPV). The results are presented with median value
and the lower and upper quartiles, 50 (25, 75) percentiles.

3. Results

Figure 2 shows the validation accuracy and loss for both
the one-layer and the five-layer models.

Comparing the curves for the two types of models one
can see that the validation accuracies has increased and the
loss decreased with the increase in number of layers. The
training accuracies and loss are more slimilar, with the one
layer model slightly higher accuracies and lower losses.

The results from the experiments are shown in table 1,
where Se, Sp, PPV and tAcc are provided.

The five layer model clearly shows the best perfor-
mance.

Figure 3 shows the confusion matrices with mean values
over the 10 repeated experiments for both the one layer and
the five layer models.

The figure shows that the five-layer models are able to
predict ASY, PGR and VF fairly well. PEA is problematic,
as it is confused with PR. There are few cases of VT which
the algorithm confused with VF. The five-layer model also
has smaller off-diagonal values in ths confusion matrix.

4. Discussion

As expected, the performance increased as new layers
were added to the models. The total accuracies increased
from 71.1% via 72.3%, 72.3%, and 75.2% for one to four
layers until it peaked at 80.3% for five layers. A six
layer model was also trained for which the total accuracy
dropped to 72.3 (71.5,73.1)%. These results indicates that
a five-layer model seems to be the optimal choice deemed
from the current experiments. In the thouroghly conducted
study by Krasteva et al where one dimensional CNNs were
trained for cardiac rhythm recognition, a five-layer model
was found to have the highest performance[9].

The confusion matrices in figure 3 also shows that the
degree of confusion has decreased as the off diagonal num-
bers representing misclassification has lower values when
comparing the one layer and the five-layer models.

In the repetition of the training of each model, the re-
sults vary for each training. This is due to the random
initialisation of the neural network weights. The current
experiments were run without setting any seed to control
the randomisation.

From the accuracy and loss curves one gets the impres-
sion that the models are learning, and that the one layer
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Figure 2: Training and validation data accuracies (a) and loss (b) for the one- and five-layer CNN models

One-layer Two-layer Three-layers Four-layer Five-layer

Se 100.0 (100.0,100.0) 100.0 (98.0,100.0) 100.0 (97.4,100.0) 100.0 (100.0,100.0) 100.0 (100.0,100.0)
AS Sp 97.5 (96.8,98.1) 97.2 (97.2,97.7) 98.2 (97.4,98.6) 98.2 (97.4,98.6) 98.2 (97.7,98.6)

PPV 87.4 (84.4,90.0) 86.4 (86.4,87.8) 90.4 (86.9,92.5) 90.5 (86.9,92.6) 90.5 (88.4,92.7)
Se 56.3 (50.6,59.8) 56.9 (52.3,59.5) 54.6 (53.2,58.3) 55.2 (52.0,58.9) 64.9 (56.0,68.7)

PEA Sp 94.1 (91.9,94.7) 93.2 (92.9,94.1) 93.8 (91.9,95.3) 95.3 (94.7,95.7) 94.7 (91.4,97.5)
PPV 81.4 (79.1,83.7) 80.7 (79.0,83.7) 81.6 (78.7,84.8) 85.8 (84.4,86.8) 86.1 (80.4,92.2)
Se 71.0 (65.3,75.4) 73.4 (62.9,75.4) 74.2 (67.3,76.6) 86.3 (81.5,88.7) 92.7 (84.3,96.4)

PR Sp 87.1 (84.5,88.4) 86.3 (85.7,87.5) 86.3 (84.1,87.5) 86.9 (85.3,88.0) 87.4 (83.8,90.5)
PPV 62.4 (58.9,64.4) 61.3 (60.8,63.6) 61.2 (59.1,63.6) 66.7 (65.5,67.8) 68.8 (64.9,74.0)
Se 85.6 (75.4,92.4) 83.1 (73.3,86.0) 87.3 (83.9,90.7) 89.0 (73.3,93.2) 87.3 (83.5,92.4)

VF Sp 90.6 (88.3,94.5) 93.1 (90.5,94.4) 90.4 (89.5,92.0) 95.4 (92.1,97.0) 97.0 (97.0,98.0)
PPV 73.6 (69.3,79.8) 79.4 (71.2,81.2) 72.6 (69.5,77.0) 80.9 (76.8,89.7) 90.2 (89.4,92.2)
Se 60.0 (52.5,60.0) 60.0 (60.0,60.0) 60.0 (52.5,60.0) 60.0 (60.0,70.0) 60.0 (60.0,60.0)

VT Sp 96.1 (92.8,98.2) 93.9 (92.5,97.0) 97.0 (96.0,98.0) 95.9 (94.4,98.2) 97.6 (96.1,98.3)
PPV 38.5 (27.7,54.2) 28.6 (23.0,45.6) 45.6 (38.1,50.0) 38.9 (30.8,57.5) 48.1 (41.6,58.6)

tAcc 71.1 (70.5,73.3) 72.3 (69.9,74.0) 72.3 (71.3,75.0) 75.2 (72.3,78.9) 80.3 (78.1,81.3)

Table 1: Results for CNNs with varying architectures.

model is overtrained as the deviation to the validation ac-
curacies and losses are much larger than for the five-layer
models

The results in this study is also comparable to those
achieved by B. Rad et al who reported a tAcc of 78.5%
and Se (PPV) for AS, PEA, PR, VF, and VT of 88.7%
(91.0%), 68.9% (70.4%), 65.9% (69.0%), 86.2% (83.8%),
and 78.8% (72.9%), respectively[3].

It must be noted that the current study was conducted on
a subset of (100 episodes) of the data set of 298 episodes
used by B. Rad et al. In the future we plan to prepare

a larger data set for experimentation with deep learning
models.

It is also worth noting that only artifact free ECG cuts
were used in this study. At some time we will have to in-
clude cuts with artifacts from chest compressions to see if
deep learning models can learn to classify such ECG cuts.
Both approaches with combination of artifact removal by
adaptive filters[4, 10] or without such filtering can be con-
sidered.
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Figure 3: Confusion matrix for (a) the one-layer CNN and (b) the five-layer CNN

5. Conclusion

A CNN based model has been demonstratet to be able to
classify the rhythms typically seen during out-of-hospital
resuscitation. The dataset was limited to 100 episodes, so
this must be considered a preliminary study and the results
should be confirmed in an expanded data set.
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