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Abstract

In the George B. Moody PhysioNet Challenge 2023 on
’Predicting Neurological Recovery from Coma After Car-
diac Arrest’, our team, UFC MDCC, employed machine
learning techniques to predict patient prognosis based on
electroencefalogram (EEG) signals. Our strategy was to
extract features from the EEG signals, capturing both lin-
ear and non-linear characteristics from time and frequency
domains. The chosen model was Random Forest, trained
with various feature extraction strategies. Our team’s per-
formance on the test set at different time intervals are as
follows: At 12 hours - Rank 10, Challenge Score 0.312; at
24 hours - Rank 24, Challenge Score 0.312; at 48 hours -
Rank 28, Challenge Score 0.272; and at 72 hours - Rank
32, Challenge Score 0.272.

Keywords— Prognosis, Cardiac Arrest, Electroence-
falogram (EEG), Machine Learning, Random Forest.

1. Introduction

Cardiac arrest remains a major medical emergency,
representing a significant health challenge and a crucial
decision-making point for physicians. After such a life-
threatening event, the need for a reliable prognosis be-
comes paramount. Given the significant implications of
this task, which often informs decisions about treatment
goals and often withdrawal of life support, it is essential to
use reliable prognostic tools. EEG, in particular, has been
used since the 1960s and has proven to be a valuable tool,
especially when used in conjunction with other prognostic
tools [1]. Although EEG is the most commonly used prog-
nostic tool after cardiac arrest [2], its interpretation can be
challenging and somewhat subjective.

In light of the importance of accurate prognostication,
the George B. Moody PhysioNet[3] Challenge 2023 was
established to foster the development of algorithms pre-
dicting neurological recovery from coma after cardiac ar-
rest[4]. This work is our contribution to the challenge,
aiming to explore a comprehensive list of characteristics
present in EEG signals for more accurate post-cardiac ar-

rest prognoses. By leveraging a rich dataset from the In-
ternational Cardiac Arrest Research (I-CARE) consortium
[5], we aim to unveil a tool with potential clinical utility in
guiding post-cardiac arrest care decisions.

2. Methodology

2.1. Data Description

The dataset used in this work is sourced from seven aca-
demic institutions in the U.S. and Europe, all participants
of the International Cardiac Arrest Research consortium
(I-CARE). The data encompasses 1,020 adult patients who
experienced either out-of-hospital or in-hospital cardiac ar-
rest, subsequently gained return of spontaneous circulation
(ROSC), but remained in a coma.

The data was partitioned into training (60%), validation
(10%), and test (30%) sets. Only the training set, con-
sisting of 607 samples, was used in this work. From this
training set, which was the only set publicly shared by the
Challenge, we generated two new subsets. The first sub-
set, which we refer to as the ”local training set,” contain-
ing 70% of the official training data. The second subset,
termed the ”local test set,” comprises 30% of the official
training data. Each patient may have been subjected to up
to 72 hours of EEG recordings. Finally, the signal, while
continuous, may exhibit gaps or deteriorations in quality
due to ICU conditions or other non-physiological factors.

Throughout this work, two versions of the dataset were
used. In the first version [6], only the cleanest 5 minutes
of EEG data per hour are provided for each patient. These
signals were extracted from electrodes placed according to
the popular international standardized 10-20 system via 18
bipolar channel pairs [7], in which each electrode’s voltage
is linked and compared to an adjacent one to form a chain
of electrodes. Finally, all EEG data were downsampled to
100 Hz.

However, in the second version of the released data [8],
each full hour of EEG signal is provided, and then pre-
sented via the monopolar electrode placement [7], which
involves the use of a recording electrode positioned away



from the area of interest, ensuring capture of minimal ac-
tivity or no relevant activity (e.g., an EEG electrode on the
scalp with the reference electrode placed off the scalp).
Additionally, other biosignals and annotations are intro-
duced, like Electromyogram (EMG), Electrocardiogram
(ECG) and Blood oxygen saturation (SpO2).

Clinical data elements include patient demographics
(age, sex), hospital identifier, location of the arrest event,
type of cardiac rhythm at the time of resuscitation, and
the interval from cardiac arrest to ROSC. Patient outcomes
were assessed using the Cerebral Performance Category
(CPC) scale, an ordinal scale ranging from 1 (optimal neu-
rological function) to 5 (death). For this study, outcomes
were bifurcated as ”Good outcome” and ”Poor outcome”.

2.2. Preprocessing

Data pre-processing is a pivotal step in any signal analy-
sis work, especially when dealing with medical data. Such
datasets often contain artifacts, noise, and other undesired
elements that can compromise the quality of subsequent
analyses. One of the consistent challenges we faced across
all runs was the presence of blank or missing values. Han-
dling these appropriately is paramount to ensure data in-
tegrity and to prevent distortions in the analyses.

To address this issue, notably in clinical data, we em-
ployed the SimpleImputer function from the scikit-learn
[9] library available on Python software language. By de-
fault, this function replaces missing values with the mean
of the column, ensuring a smooth imputation that doesn’t
introduce outliers or skew the dataset distribution.

Additionally, categorical attributes, such as gender, were
converted into numerical representations. Specifically, we
utilized one-hot encoding techniques to transform these
categorical values into binary vectors. This transformation
ensures that the algorithms treat these attributes correctly
without making inappropriate ordinal assumptions.

2.3. Feature Extraction from EEG

To facilitate the process of extracting features from
the EEG data, we designed a Python class called
EEGFeatureExtractor, tailored for this purpose.
This class primarily operates on a real-valued matrix, X,
defined as:

X ∈ RN×M

Where:
• N represents the number of channels (rows of the ma-
trix).
• M represents the number of time-points or events
(columns of the matrix).

The class is equipped with a plethora of methods, each
of them dedicated to extracting a specific feature from the

data matrix. The features were categorized into two main
domains. Time domain, represented by the following fea-
tures: Mean, Standard Deviation, Skewness, Kurtosis, Sig-
nal Energy, Zero Crossing Rate, Peak-to-Peak Amplitude,
Root Mean Square, Shannon Entropy, Hjorth Parameters.
Frequency domain, represented by the features: CVIF (Co-
efficient of Variation of Instantaneous Frequency), Total
Amplitude Rhythm, Total Rhythm Index, Channels Coher-
ence, Phase Lag Index, Envelope Correlation, Detrended
Fluctuation Analysis. Upon processing, the class outputs
a vector consolidating all the extracted attributes. To help
and ensure the accuracy of the feature extraction process,
we utilized several renowned Python libraries. Specifi-
cally, we used the statistical and signal processing func-
tions from SciPy [10] and the nolds library for non-
linear analysis [11].

2.4. Machine Learning Model

Two machine learning models were employed for dis-
tinct tasks throughout this work. The first model, a clas-
sifier, was utilized to classify the EEG signal based on
the extracted features and provide a prognosis as either
”Good” or ”Poor”. The second model, a regressor, aimed
to predict the Cerebral Performance Category (CPC) rang-
ing from 1 to 5.

Both models were implemented using the Random For-
est algorithm from the scikit-learn library with the
same set of hyperparameters as shown in Table 1. The
decision to maintain the same model throughout the work
was not driven by the intent to find the best model per se.
Instead, the primary objective was to evaluate the qual-
ity and robustness of the extracted features. By keeping
the model consistent, any variations in performance could
be attributed primarily to the features, thereby providing a
clearer insight into their effectiveness and relevance.

Parameter Value
n estimators 123
max leaf nodes 456
random state 789

Table 1: Hyperparameters used on the Random Forest
models.

2.5. Execution Strategies

2.5.1. Extracting features from whole EEG
recording

The initial strategy employed involved extracting fea-
tures from the entire EEG recording. Specifically, for each
hour in which a signal was recorded, the respective signal



was concatenated with the signals from the previous hours,
thus generating a single consolidated signal for each pa-
tient.

Even with the multichannel nature of EEG recording,
we decided to extract features from only the first channel
(Fp1-F7), which specifically targets the fronto-parietal re-
gions of the brain, which are associated with consciousness
and cognitive activity, making them relevant for prognosis.
of cardiac arrest. Furthermore, we extract additional fea-
tures by applying the same extraction methods to the fre-
quency bands derived from the main signal: Delta (δ): 0.5
- 4.0 Hz, Theta (θ): 4.0 - 8.0 Hz, Alpha (α): 8.0 - 12.0 Hz,
Beta (β): 12.0 - 30.0 Hz. Consequently, this resulted in a
set of 200 distinct attributes derived from the EEG signal.
This strategy was applied in the first version of the dataset.

2.5.2. Feature extraction with additional sig-
nal preprocessing techniques

Based on the second version of the dataset, we adopted
a more robust approach to signal preprocessing, aiming to
get rid of unwanted noise.

The initial preprocessing phase involved applying a
bandpass filter to the signals, restricting the frequency
components to a range between 0.1 Hz and 30 Hz. Notably,
if the mains frequency resided in this band, a filter notch
would be used to eliminate possible interference. Then, the
signals underwent a resampling procedure. Depending on
the original sampling frequency, the data was resampled to
128 Hz or 125 Hz. After resampling, normalization was
applied to constrain the data within the range [-1, 1].

To extract features from the EEG, the data were trans-
posed into a bipolar montage using the channels F3-P3 and
F4-P4. These channels also specifically target the fronto-
parietal regions of the brain, and was summarized by av-
erage amplitudel. From the resulting signal the Feature
Extraction class (EEGFeatureExtractor) was applied.

3. Results

Using the first strategy mentioned in this work, we
achieved the following results by using the local training
and test set: Challenge Score: 0.561, AUROC: 0.880, Ac-
curacy: 0.791, F1 Score: 0.6667, Precision: 0.6909, Re-
call: 0.6441, MSE: 2.025, MAE: 1.240. The Confusion
Matrix and ROC Curve obtained from the first strategy
when applied to the local test set are illustrated in Figure 1
and 2. No entries using this strategy were submitted during
the official phase of the Challenge and therefore were not
officially scored or ranked.

With the second execution strategy mentioned in this
work, our UFC MDCC team was ranked at the 32nd posi-
tion in the official phase of the PhysioNet Challenge 2023.
Metrics obtained from official validation set: Challenge

Figure 1: Confusion Matrix from the first strategy applied
to the local test set.

Figure 2: ROC Curve from the first strategy applied to the
local test set.

Score: 0.357, AUROC: 0.682, Accuracy: 0.681, F1 Score:
0.676, Precision: 0.5758, Recall: 0.7037, MSE: 3.289,
MAE: 1.557.

On the official test set, we achieved the following met-
rics: Challenge Score: 0.272, AUROC: 0.702, Accuracy:
0.716, F1 Score: 0.614, MSE: 2.671, MAE: 1.403.

Detailed results achieved by official data set be shown
on Tables 2, 3, 4 and 5.

In short, for official phase, our team achieved a score of
0.373 on the official validation set and 0.272 on official test
set.



Official Dataset Score
Training 0.437
Validation 0.373
Test 0.312

Table 2: Scores (12 hours after ROSC).

Official Dataset Score
Training 0.647
Validation 0.433
Test 0.312

Table 3: Scores (24 hours after ROSC).

4. Conclusion

Reflecting on our approach and results, we discern sev-
eral areas that offer paths for improvement. The decision
to only utilize the frontal EEG channels used from the sec-
ond version of the dataset potentially limited the national
richness representation of our extracted features. Extract-
ing features from all EEG channels could have given us a
more holistic view of the patient’s brain activity, improv-
ing prognostic accuracy.

In retrospect, combining the feature extraction approach
from first strategy with processing steps for every EEG
channel of the second strategy would have likely resulted
in a more robust set of features. By amalgamating the
strengths of both strategies, we could have created a com-
prehensive feature set that better encapsulates the intrica-
cies of the EEG signals.

In conclusion, while our results in the Challenge were
promising, the insights gained from this experience pro-
vide a clear roadmap for future refinements in our ap-
proach.
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