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Abstract

Electroencephalogram (EEG) patterns can reveal im-
portant details regarding the level of neurological recov-
ery in comatose individuals who have undergone car-
diac arrest hospitalization. Automated algorithms based
on EEG signal processing and machine learning can be
used to estimate a patient’s chances of regaining con-
sciousness. This study uses tunable Q-factor wavelet
transform (TQWT)-based signal refinement and Tensor
decomposition-based feature extraction from EEG records
to construct probability-based favorable or bad outcome
labels for prognosis. TQWT-based signal decomposition
into sub-bands of EEG signals employing optimal settings
for feature extraction to enhance critical care patterns. A
3-way tensor per record is created using scattering trans-
form, which captures time-frequency information. The
core tensor from Tucker decomposition of the produced
tensor is utilized to get 1-D feature vectors along with
other time and frequency domain features for bagging en-
semble classifier learning. We participated in the George
B. Moody PhysioNet Challenge 2023 as team ‘Medics’ and
obtained 7th ranking with challenge score of 0.69 on chal-
lenge hidden test data for prognostication 72 hours after
return of spontaneous circulation (ROSC).

1. Introduction

Patients suffering cardiac arrest undergo sudden un-
expected fading of cardiac activity, respiration and con-
sciousness. The number of people who experience a car-
diac arrest every year on a global scale is approximately 6
million [1, 2]. Survival rates for such patients range from
1% to 10%, depending on the patient’s geographic location
[3]. Cardiac arrest survivors frequently suffer brain dam-
age and coma. The majority of cardiac arrest survivors
admitted in intensive care unit (ICUs) are comatose. For
comatose cases, doctors often have to guess if the patient
will eventually recover consciousness. The patient will get
continuous care for good prognosis results and withdrawal
of life support for poor prognosis causing death. However,

a high rate of false positive predictions has been a major
concern with regard to such subjective forms of prognosti-
cation.

For medical decision-making, EEG signals can be anal-
ysed for attenuated voltage, burst suppression, and seizure-
like patterns. However, manually analysing lengthy EEG
recordings with numerous channels is laborious, expen-
sive, engaging, and requires expertise which is unavail-
able in most of the healthcare centers[4]. In order to tackle
this issue and achieve better prognostication of coma, elec-
troencephalogram (EEG) signals can yield predictive in-
formation by means of automated analysis[5, 6]. Thus, the
role of automatic EEG signal analysis in clinical practice
has huge scope for better comatose patient care with accu-
rate and prompt prognosis [4].

Recently, many such automated methods have been pro-
posed but results portrayed were merely for a few num-
bers of patients that too from a particular hospital setting
[5,7,8]. Pham et al. [7] in their study computed nine prede-
fined, automatically calculated, quantitative EEG features
to train a random forest model. A convolutional neural
network (CNN) was also trained using 10s segments of
EEG signals. Similarly, Tjepkema et al. [8] performed the
prognosis of good and poor outcomes using CNN trained
using 5min EEG data which was downsampled to 64 Hz
sampling rate. However, these methods can not be gen-
eralized for unseen and diverse data. To overcome these
limitations, George B. Moody PhysioNet Challenge 2023
(GBMP Challenge 2023) has provided an opportunity to
develop an open source algorithm to predict neurological
recovery of comatose patient by disclosing a large multi-
center international database.

In this paper, in line with GBMP Challenge 2023
objective [9, 10], we developed a binary classification
model using TQWT-based signal refinement and tensor
decomposition-based feature extraction from EEG records
to generate probability and good or bad outcome prog-
noses. To begin with, TQWT based signal decomposition
is applied on EEG signals to get relevant sub-bands for en-
hancement of the meaningful clinical patterns. The tensor
based features is obtained by applying scattering transform
on TQWT sub-bands to get time-frequency based informa-



tion. Scattering transform of EEG signal epochs are used
to create a 3-way tensor per record. The core tensor re-
sulting from Tucker decomposition of the formed tensor is
then used to get 1-D feature vectors along with the other
time and frequency domain features for learning of ensem-
ble bagging classifier model.

Rest of paper is organized as follows. Our methodol-
ogy is in section 2. Through numerous experiments, we
provide our results and evaluations in section 3. Finally,
section 4 presents conclusions and future directions.

2. Methodology

The major steps involved in the proposed methodology
are pre-processing, TQWT based decomposition, applying
scattering transform on TQWT sub-bands, tensor based
feature extraction, and regression with binary classifica-
tion. The overall system design is shown in Figure 1 and
the details of each involved step is described below.

2.1. Data

The data for this challenge comprises of 1,020 adult
patients in ICUs who suffered cardiac arrest either out-
of-hospital or in-hospital and attained normalcy of their
heart activity but remained comatose. The data acquisi-
tion was done from seven academic hospitals in the U.S.
and Europe by researchers in the International Cardiac Ar-
rest REsearch consortium (I-CARE) [11]. The dataset in-
cludes 19-channel continuous EEG signals obtained up to
72 hours from return of spontaneous circulation (ROSC). It
also includes ECG, EMG and/or other clinical time-series
signals. The recordings have quality deterioration from
various artifacts. The data was partitioned into training,
validation, and test sets. Approximately 60% of the pa-
tients are in the publicly available training set, 10% in the
hidden validation set, and 30% in the hidden test set.

2.2. Pre-Processing

For this study, 19-channel continuous EEG signals ob-
tained up to 72 hours from ROSC along with the meta data
variables viz. age, gender, ROSC, out-of-hospital cardiac
arrest (OHCA), shockable rhythm, and targeted tempera-
ture management (TTM) are used. One minute EEG signal
segment per hour is pre-processed to generate 10 seconds
epochs for further analysis. The pre-processing covers fil-
tering, re-sampling, normalization, and epoching. A notch
filter is applied to remove utility frequency from the EEG
signals. A band pass filter with cut-off frequency of 0.1
Hz and 30 Hz is used to remove artifacts. The EEG signals
were re-sampled to 128/125 Hz frequency depending upon
even/odd sampling frequency of the data. Bipolar mon-
tages are derived from given channels. The signal scaling

is done with min-max normalization scheme to bring all
the signals in the range [-1,1].

2.3. Tensor and Tucker decomposition

Wavelet transformations (WTs) have achieved success
in time-frequency analysis of nonstationary signals in sev-
eral applications. In this work, on one hand, discrete and
adaptive wavelet transform TQWT is used to analyze the
oscillatory components of EEG signals [12]. The Q-factor
(Q), redundancy (r), and decomposition levels (J) of this
transformation are easy to change. And tuning these input
parameters can give enhanced information in the decom-
posed sub-bands for further signal processing.

On the other hand, this study also investigates apply-
ing the WT based Scattering Transform (ST) to build the
tensor for tucker decomposition-based feature extraction.
ST is a non-linear mathematical operator based on con-
volutional networks [13]. ST uses low-pass filter averag-
ing, complicated modulus procedures, and many wavelet
transform layers. Its major goal is to create a translation-
invariant and compact time-warping-stable representation.
A signal and its shifted counterpart have the same feature
space representation with ST.

A tensor is a multi-way array of data, and is the natural
generalization of a matrix when the order is higher than
two. In this work, the ST images of the TQWT sub-bands
are clubbed and stacked channel-wise to form the 3-way
tensor X for subsequent tensor decomposition. Similar to
Singular value decomposition, Tucker tensor decomposi-
tion yields orthogonal factor matrices such as unitary ma-
trices along with a core tensor. The core tensor can be
represented as: C ≈ X× 1U

(1)T × 2U
(2)T × 3U

(3)T =
X ×

{
UT

}
, where U(n) are the unitary factor matrices.

The optimized rank setting of core tensor C is found with
an objective to maximize the classification performance
between two classes with respect to f-score for the prob-
lem at hand.

2.4. Feature Extraction

In the proposed methodology, three distinct feature sets
are derived from the available I-CARE dataset: (a) time-
and frequency- domain features, (b) time-frequency do-
main using tensor representation via ST of EEG data,
and (c) given patients’ metadata. The pre-processed one
minute EEG data, which is further divided into six epochs
of ten second each, undergoes the TQWT decomposition.
For each sub-bands of decomposed epochs, the statistical
feature set is extracted which includes the mean, standard
deviation, variance, skewness, kurtosis, entropy, Hjorth
mobility, complexity, and activity. Along with this, power
spectral density feature set is extracted from one minute
EEG data for four frequency ranges 0.5-8 Hz, 4-8HZ, 8-
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Figure 1. The proposed coma prognostication scheme for cardiac arrest patients.

12Hz, and 12-30Hz corresponding to delta, theta, alpha,
and beta rhythms respectively.

ST is applied on the subbands to get the time-frequency
representation of the same and stacked channel wise to
form a 3-way tensor. Further, to obtain the compressed
time-frequency information from the tensor, Tucker de-
compostion is applied as explained in the previous sec-
tion. Subsequently, obtained core tensor is flattened as
an array to form the second set of features. Finally, the
patient metadata feature set includes age (in years), sex,
return of spontaneous circulation (ROSC) in minutes, out-
of-hospital cardiac arrest (OHCA), shockable rhythm, tar-
geted temperature management(TTM) in Celsius.

2.5. Prognostication Models

In this study, bagging decision tree ensembles are used
to generate neurologic prognostication following cardiac
arrest. Decision trees are non-parametric supervised learn-
ing methods most widely used for regression and classifi-
cation tasks due to its interpretability and the availability of
efficient and scalable learning algorithms [14]. Bagging is
a ensemble learning method based on decision trees which
creates many random subsets of the dataset with replace-
ments. Each subset of data is used to develop a decision
tree learner. Finally, an ensemble of weak learners are se-
lected to improve generalizability over a single estimator
in terms of prediction performance. On an average, vari-
ance of the combination of estimators is usually lower than
any of the single weak learner. All the features extracted
as discussed in the section 2.4 are concatenated and fed
as input to the ensemble schemes. The first scheme is to
classify clinical data into poor and good outcomes using
bagging decision tree ensemble classifier. Further, to ob-
tain the CPC scores in the range from 1-5 bagging decision
tree ensemble regressor is used in the second scheme.

3. Results and Discussion

An experimental study was carried out to obtain the op-
timal setting for the TQWT decomposition, ST based ten-
sor creation, and tensor decomposition which in-turn pro-
duces the discriminating features between the two classes
for classification. The objective of this experimental study
was to enhance the classification performance in terms of
average of the f-scores of considered two classes. Thus,
grid search based obtained optimal TQWT decomposition
parameters values are found to be Q = 1, r = 4, and J = 11.
Similarly ST parameters j and q are empirically chosen as
2, where q is the number of wavelets per octave and 2j is
the averaging scale. Finally, for Tucker decomposition of
the formed tensor the required optimal rank setting was de-
rived as 10× 2× 21 using grid search based optimization.
The proposed neurologic prognostication involves classi-
fication of patients’ data as ”Good” and ”Poor” outcome
and generation of CPC score from 1-5 using regression
method, therefore two bagging ensemble models are used.
The bagging ensemble models are used with default set-
tings in python library scikit-learn except the ’number of
base estimators’ training parameter which was empirically
set to 300.

The average results of the ten-fold cross-validation per-
formed on the individual extracted feature sets and com-
bined feature set are shown in Table 1.

Table 1. Performance measures for ten-fold cross valida-
tion using training data.

Feature set Accuracy F-measure Challenge Score
Metadata features 0.65 0.61 0.42
Time and frequency domain features 0.77 0.74 0.60
Tensor based features 0.67 0.64 0.45
Combination of features 0.78 0.75 0.66



The proposed methodology was evaluated on challenge
hidden test data for prognostication 72 hours, 48 hours, 24
hours and 12 hours after ROSC and the obtained results are
tabulated in Table 2.

Table 2. Performance measures for prognostication after
several hours of ROSC using test data.

Hours after ROSC Accuracy F-measure Challenge Score
72 hours 0.77 0.70 0.69
48 hours 0.76 0.68 0.67
24 hours 0.74 0.63 0.32
12 hours 0.67 0.45 0.23

4. Conclusion

In this study, we developed a tool to generate neurolog-
ical prognostication outcomes along with the CPC score
for the cardiac arrest comatose patients. The quantitative
EEG methods like TQWT based signal decomposition and
Tensor decomposition based feature extraction are capa-
ble of detecting early signs of neurological recovery while
coma persists. The classification results demonstrates that
a competitive solution for such prognosis can be built us-
ing proposed methodology. The proposed methodology is
designed for only one minute data which in turn reduces
the processing time as compared to the hourly data. The
choice of epoch, parameters of TQWT, scattering trans-
form and tensor decomposition could be further investi-
gated in the future work along with the exploration of other
feature sets and classification/regression technique.
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