
Epycon: A Single-platform Python Package for Parsing and Converting Raw
Electrophysiology Data into Open Formats

Jakub Hejc1,2,3, Richard Redina1,3, Jana Kolarova3, Zdenek Starek1,4

1 International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
2 Department of Pediatric, Children’s Hospital, The University Hospital Brno, Brno, Czech Republic

3 Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
4 1st Department of Internal Medicine, Cardio-Angiology, Faculty of Medicine, Masaryk University,

Brno, Czech Republic

Abstract

The WorkMate™ platform is a widely used system for
recording and analyzing cardiac electrophysiology wave-
forms recorded during interventional procedures. How-
ever, the internal export tools do not usually allow full
access to unprocessed data, which challenges its use for
research purposes.

The Epycon package is a data parsing tool that enables
direct access to raw unipolar/bipolar waveforms and clin-
ical annotations stored in WorkMate™ proprietary seri-
alized file formats. It provides the ability to convert the
data into established open formats, including Comma-
Separated Values and Hierarchical Data Format 5. Epy-
con offers a number of features that make it a valuable tool
for researchers, including memory-efficient batch process-
ing, support for both raw unipolar and bipolar waveforms,
and comprehensive documentation of WorkMate™ file for-
mat for development purposes.

Epycon is implemented in Python 3.8 and can help
researchers to more efficiently access electrophysiology
data, facilitating research in developing algorithms for
cardiac electrogram processing or creating open-source
databases of electrophysiology data for public use.

1. Introduction

Interventional electrophysiology (EP) procedures play
a crucial role in the effective diagnosis and treatment of
cardiac arrhythmias [1]. It is essential for investigating the
electrical properties of the heart and gaining insights into
the arrhythmia mechanism [2].

Recent data from the United States reports a growing
trend in the number of EP procedures with the annual rate
surging from approximately 320 to 675 procedures per
100,000 medical beneficiaries [3]. The trend has resulted
in a substantial reservoir of clinical recordings that prove

invaluable to various research fields.
EP studies typically encompass the recording of intrac-

ardiac electrograms, the implementation of pacing proto-
cols to observe conduction patterns under stress condi-
tions, and the measurement of local activation intervals
[1, 4]. They are supported by an infrastructure comprising
complex hardware and software systems designed specifi-
cally for gathering, display, processing, analysis and stor-
age of the procedural data [4].

The acquired waveforms are usually stored in closed,
platform-dependent file formats with dedicated data trans-
fer and exportation tools supporting general needs of clin-
ical practitioners. A file format documentation is seldom
provided by the manufacturers, which poses a significant
obstacle to efficiently extracting and collecting the study
data. Researchers seeking access to complete raw record-
ings must rely on dedicated tools constrained by internal
settings and time-consuming manual adjustment.

The WorkMate™ and WorkMate Claris™ Systems (Ab-
bott Laboratories, Abbott Park, IL, USA) belong among
the widespread acquisition and processing units utilized to
support EP procedures. Our aims are to provide compre-
hensive file format documentation for development pur-
poses, along with a custom parser for Python that com-
plements exportation tools provided by the platform.

2. Methods

2.1. System and data description

The WorkMate™ EP platform facilitates recording of
the waveforms through a proprietary amplifier while em-
ploying minimal built-in hardware filtering. The wave-
forms can be sampled at frequencies of up to 2000 Hz,
with a resolution of 78 nV/LSb. Post-acquisition filtering
is performed using digital filters. Additionally, bipolar in-
tracardiac channels are derived from the original unipolar



recordings. The system has the capacity to record up to
256 channels. Up to overall 448 channels can be config-
ured and adjusted by the system operator.

The waveforms are stored as raw signals into a
separate data file (DLog) per each recording session
matching an expression ˆ[0-9]{8}\.log$. The file
entries.log (EntriesLog) contains clinical and proce-
dural annotations provided by the operator or by the sys-
tem’s annotation algorithms.

The waveforms are stored as raw signals in separate data
files (DLog) for each recording session, matching an ex-
pression ˆ[0-9]{8}.log$. The file entries.log
(EntryLog) contains clinical and procedural annotations
provided by the operator or by the system’s internal an-
notation algorithms. Other study-specific files have been
excluded from our analysis.

2.2. File format decoding

The contiguous arrays of bytes in the DLog and Entry-
Log was decoded through visual reverse engineering and
inter-file differential analysis. This process involved iden-
tifying byte blocks that contained raw data chunks, acqui-
sition settings, processing and visualization settings, and
clinical annotations.

In general, we established a set of demographic, proce-
dural, acquisition, and processing parameters, denoted as
P = {p1, p2, . . . , pi}, which were known to have a func-
tional connection to the data and were expected to be inte-
gral components of the analyzed files. For each pi ∈ P , the
set of potential parameter values Si = {pi,1, pi,2, . . . , pi,j}
was determined by considering the acceptable range and
step size allowed by the platform for the given parameter.
We illustrate the process of identifying the byte addresses
for each pi using pseudocode in Algorithm 1.

Algorithm 1 Differential analysis
Input: Sets P and Si

Output: Start and stop bytes {bi,1, bi,2} for each pi
1: for each pi ∈ P do
2: for each si,j ∈ Si do
3: Set pi to si,j
4: Di,j ←− Acquire and store data
5: Find each [bi,1 to bi,2] where Di,j−1 ̸= Di,j

6: di,j ←− Decode Di,j [bi,1 to bi,2]
7: if di,j = si,j then Collect {bi,1, bi,2, pi}
8: end if
9: end for
10: Select best {bi,1, bi,2, pi}
11: end for

2.3. Data model and formats

The package utilizes the h5py library to export the
data into Hierarchical Data Format 5 (HDF5) file [5]. In
order to simplify and streamline data access operations,
we implemented a custom API wrapper on top of h5py.
The wrapper provides more intuitive interface for work-
ing with our data model ensuring compatibility with a
third-party signal processing and viewing software Sig-
nalPlant [6]. The data model incorporates four mandatory
datasets within the HDF5 file structure specified in Table 1.

Table 1. HDF5 file structure. Attr – attribute; DS –
data set; FP – floating point; SArray – structured array
composed of multiple primitive data types; C – number
of channels; N – number of samples.

Item Item name Type Description
Attr Fs FP32 Sampling frequency
Attr GeneratedBy String Export metadata
Attr LeftI FP64 –
Attr RightI FP64 –
DS ChannelSettings SArray Display settings
DS Data FP32 CxN Waveform data
DS Info SArray Channel name/unit
DS Marks SArray Annotation + location

Alternatively, the package uses a simple columnar lay-
out with one column per data field to store the waveforms
in the Comma-separated text (CSV) format [7].

Tabular data are accompanied by a separate SEL text
file. The SEL file provides encapsulation of the metadata
and annotation marks and ensures these data can be visu-
alized in the SignalPlant platform.

2.4. Implementation and dependencies

The package was implemented in Python[8] 3.8. Ver-
sions supported for Epycon 1.0.1 release are 3.8 − 3.10.
Supported versions of the EP platforms are WorkMate™
≥ 4.1 and WorkMate Claris™ 1.1.1. External dependen-
cies include Numpy 1.23.1 and h5py 3.6.0.

3. Results

3.1. Main features

This section presents components of the Epycon pack-
age and the outcomes of our investigation into format de-
coding. Figure 1 shows a high-level representation of the
package architecture.

The parser core offers classes designed for the indepen-
dent parsing of waveforms, annotation marks, and meta-
data. The application interface (API) exposes core classes



Figure 1. A high-level representation of the package components and dependencies. Individual parsers are exposed via
application interface (API) to provide customized data handling.

to users, allowing them to customize the data handling pro-
cess. Users can access designated sections of raw data, em-
ploying option for sample-wise and channel-wise slicing.

By default, the waveform parser reads the entire data
block into memory prior to a conversion. Users have the
flexibility to define a custom chunk size for more memory-
efficient conversion or to employ a lazy-loading parser for
customized solutions.

The package include versatile platform for batch pro-
cessing, enabling users to operate on the entire database,
specific EP studies, or selected files, thereby accommodat-
ing various analytical needs.

3.2. File format decoding

Figures 2 and 3 document the structural and composi-
tional aspects of the DFile and EntryFile binary formats,
respectively. The initial row in each schema represents the
beginning of the byte stream. Individual data types are
comprehensively documented within the source code.

Each recording session creates a separate DFile contain-
ing a header block with acquisition parameters such as
sampling frequency, resolution, types of hardware filters,
channel settings, and electrode pairings, and a data block
containing chunks of waveform data. The EntryFile pro-
vides information about each annotation mark created dur-
ing the EP procedure, including the annotation type, time
of creation, and name of the related DFile.

3.3. Performance evaluation

A single-thread read-write (R-W) performance has been
tested on Intel® Xeon® X5650 2.67GHz 12MB Cache,

Figure 2. Schema documentation of the DFile internal
serialized binary format. M: number of active channels;
N: number of data samples.

Figure 3. Schema documentation of the EntryFile internal
serialized binary format. C: number of annotations.

48MB 1333 MHz DDR3 ECC, PCie 2.0 NVMe SSD
Kingston NV1. We compared the R-W performance in
terms of conversion time and relative file size change with-
out using compression for data from 12 animal EP proce-
dures performed with identical system settings including
number of acquired channels.



The mean size of the study was 4.42±2.63 GB.
The mean conversion time per study was 13.9±8.0 and
178.4±106.6 s for HDF5 and CSV, respectively. The post-
conversion relative change in file size with preserved 32-
bit precision was +2.1% for HDF5 and +97.0% in case of
CSV. Overall conversion rates were 574 MBps (HDF5) and
51 MBps (CSV).

4. Conclusion

The Epycon package offers memory-efficient batch pro-
cessing, direct access to raw unipolar/bipolar waveforms
stored in proprietary binary format, and the ability to con-
vert the waveforms and metadata into established open for-
mats, including CSV and HDF5.

5. How to use the package

The package is available via pip or on GitHub repository
github.com/fnusa-icrc-ice/epycon.

Following command can be used to convert both wave-
forms and annotation marks into HDF5 with optional
chunk size using the command line interface:

$ python -m epycon -i <study folder> \
-o <output folder> --marks \
--format hdf5 --chunk-size 64

The package can be run with YAML configuration file
to specify more comprehensive options. For example:

YAML
input:

folder: <path to folder>
studies: [<study id>, ]

output:
folder: <path to folder>
file_format: <str>

processing:
select_channels: [<channel name>, ]
mount: <bool>

...

Once you have edited the YAML file, you can run the
package with the config file using the following command:

$ python -m epycon -c config.yaml

The following example shows how to use Epycon API
in own code to lazily read waveform segment:

from epycon.core import LogDataParser

with LogDataParser(file_path,
chunksize, start_sample, end_sample,

) as parser:
next(parser)

The presented examples are for illustrative purposes
only. The syntax and behavior of the package may change
in future releases.

Acknowledgments

This publication was written at Masaryk University as
part of the project ”Novel imaging, computing and ana-
lytical methods in cardiovascular diseases diagnostics and
monitoring” number MUNI/A/1410/2022 with the support
of the Specific University Research Grant, as provided by
the Ministry of Education, Youth and Sports of the Czech
Republic in the year 2023.

Brno Ph.D. Talent Scholarship Holder R.R. funded by
the Brno City Municipality.

References

[1] Katritsis DG, Boriani G, Cosio FG, Hindricks G, Jaı̈s P,
Josephson ME, et al. European heart rhythm associa-
tion (EHRA) consensus document on the management of
supraventricular arrhythmias, endorsed by heart rhythm so-
ciety (HRS), asia-pacific heart rhythm society (APHRS), and
sociedad latinoamericana de estimulación cardiaca y elec-
trofisiologia (SOLAECE). EP Europace November 2016;
19(3):465–511.

[2] Issa ZF, Miller JM, Zipes DP. Electrophysiological testing.
In Clinical Arrhythmology and Electrophysiology. Elsevier,
2019; 81–124.

[3] Scott M, Baykaner T, Bunch TJ, Piccini JP, Russo AM, Tzou
WS, Zeitler EP, Steinberg BA. Contemporary trends in car-
diac electrophysiology procedures in the united states, and
impact of a global pandemic. Heart Rhythm O2 March 2023;
4(3):193–199.

[4] Haines DE, Beheiry S, Akar JG, Baker JL, Beinborn D, Be-
shai JF, et al. Heart rhythm society expert consensus state-
ment on electrophysiology laboratory standards: Process,
protocols, equipment, personnel, and safety. Heart Rhythm
August 2014;11(8):e9–e51.

[5] The HDF Group. Hierarchical Data Format, version 5, 1997-
2023. URL http://www.hdfgroup.org/HDF5.

[6] Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant: an
open signal processing software platform. Physiological
Measurement May 2016;37(7):N38–N48.

[7] Shafranovich Y. Common format and MIME type for
comma-separated values (CSV) files. Technical report, Oc-
tober 2005.

[8] Van Rossum G, Drake FL. Python 3 Reference Manual.
Scotts Valley, CA: CreateSpace, 2009. ISBN 1441412697.

Address for correspondence:

Jakub Hejc
ICRC – St. Anne’s University Hospital, Pekarska 53, 602 00
Brno, Czech Republic
jakub.hejc@fnusa.cz

http://www.github.com/fnusa-icrc-ice/epycon
http://www.hdfgroup.org/HDF5

	Introduction
	Methods
	System and data description
	File format decoding
	Data model and formats
	Implementation and dependencies

	Results
	Main features
	File format decoding
	Performance evaluation

	Conclusion
	How to use the package

