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Abstract

Atrial fibrillation (AF) is a cardiac disorder charac-
terised by rapid atrial contractions. Current treatments,
including ablation, vary in effectiveness. Recent mechanis-
tic modelling studies have highlighted the significance of
the right atrium (RA) in predicting AF outcomes, although
its role remains unclear. This study employs a novel open-
source biatrial modelling pipeline to assess AF inducibility
and monitor AF dynamics on clinical timescales.

Patient-specific models were created from late gadolin-
ium enhancement MRI (LGE-MRI) scans of 20 patients.
Manual RA and left atrial (LA) segmentation, fibrosis map-
ping in pre-processing, and calculation of atrial coordi-
nates to incorporate atrial structures and fibres were per-
formed. These personalised models were simulated and
post-processed to assess the AF wavefront patterns.

RA integration significantly increased rotor activity and
total phase singularities (PS) within the LA posterior walls
and reduced conduction velocity, indicating greater poten-
tial for AF sustainability. LA exhibited a higher mean PS
density (3.8 rotors/cm²) than RA (2.1 rotors/cm²), indicat-
ing regions prone to re-entry or wavefront break-up.

The modelling pipeline highlights the potential of bia-
trial models to efficiently predict AF outcomes, enabling
personalised therapies and comparisons of ablation ap-
proaches and anti-arrhythmic drug therapies.

1. Introduction

Atrial fibrillation (AF) is a prevalent cardiac arrhythmia
characterised by abnormal electrical impulses [1]. Cur-
rent anti-arrhythmic drugs are suboptimal, making radio-
frequency catheter ablation (RFCA) the gold standard
[1]. RFCA poses challenges in predicting ablation targets,
leading to the adoption of LGE-MRI for 3D mapping and
optimised therapy. These imaging advances enhance per-
sonalised therapy and streamline clinical workflows. [2].

Prior research has primarily focussed on LA modelling

to understand AF; however, the potential of biatrial models
in predicting AF inducibility remains underexplored [3,4].
RA presents challenges due to limited pre-labelled datasets
and geometric variability, especially in manual segmen-
tation [2]. This study addresses these constraints as car-
diac modelling advances towards large-scale in silico stud-
ies and personalised predictions, which holds potential for
patient-specific and population digital twins [3, 4].

We present a biatrial modelling pipeline using LGE-
MRI data from 20 patients. To address RA segmentation
challenges, we employed segmentation tools with an MRI
atlas. Patient-specific bilayer meshes incorporated atrial
fibres and structures from a fibre atlas using atrial coordi-
nates. We conducted finite element simulations and evalu-
ated PS density maps for AF inducibility assessment.

2. Materials and Methods

2.1. Patient Cohort

This study used LGE-MRI scans of the atria from 20 pa-
tients in the Atrial Segmentation Challenge Dataset (2018)
[5]. These scans had a spatial resolution of 0.625 x 0.625
x 0.625 mm³ with variable spatial dimensions (576 x 576
x 88 or 640 x 640 x 88 pixels). Ethical guidelines were
followed, and all patients provided informed consent [6].

2.2. Image Segmentation

Atrial anatomical models were created from LGE-MRI
data using 3D Slicer software (version 5.3.0). This process
involved importing DICOM data, manually tracing LA and
RA from individual 2D cross-sectional images, and export-
ing 3D models in NIfTI format for mesh pre-processing.
To ensure accurate labelling, pre-labelled LA datasets and
a reference MRI atlas were employed, validated by a car-
diac modelling expert. Segmented meshes were saved in
the VTK file format for all cases. All the steps in the model
construction process are shown in Figure 1.



Figure 1. Model development and AF simulation pro-
tocol. (A) LGE-MRI data acquisition and manual segmen-
tation, mesh pre-processing with (B) LGE intensity regis-
tration, and (C) region assignment using landmark selec-
tion. (D) Integration of atrial fibres from the Labarthe et
al.(2014) atlas with atrial coordinates, depicting endocar-
dial fibres as streamlines. (E) Finite element simulations
for AF induction and (F) subsequent post-processing. (LA
regions: LA body (dark blue), left superior pulmonary vein
(yellow), left atrial appendage (grey), right superior pul-
monary vein (dark orange), right inferior pulmonary vein
(red), left inferior pulmonary vein (orange). RA regions:
RA body (dark blue), superior vena cava (light grey), infe-
rior vena cava (orange) and coronary sinus (grey)).

2.3. Mesh Pre-processing

The subsequent steps form a mesh for electrophysiolog-
ical modelling. The LA and RA models were imported
into the CemrgApp software (v2.2.1) to project the max-
imum LGE intensities onto the meshes [7]. A predefined
image intensity ratio (IIR), which normalises pixel inten-
sity on the atrial wall by mean blood pool intensity, classi-
fied regions as normal (IIR <1.22) or scarred (IIR >1.22)
[3, 8]. Closed surface meshes were clipped at the pul-
monary veins (PVs), mitral valve (MV), coronary sinus
(CS), tricuspid valve (TV), and vena cava (VC) using Par-
aview software (v5.9.0) [3].

2.4. Landmark Selection

We employed a rule-based approach with a custom
MATLAB script to define both general and specific regions
while establishing boundary conditions [9]. In the LA,
general landmarks included the right superior pulmonary
vein (RSPV), left superior pulmonary vein (LSPV), right
inferior pulmonary vein (RIPV), left inferior pulmonary
vein (LIPV), and left atrial appendage (LAA) apex. Spe-
cific landmarks were assigned at the highest lateral posi-
tions, LSPV-LA and RSPV-LA body intersections, and the
lateral-septal border parallel to LSPV and RSPV. In the
RA, general landmarks included the right atrial appendage

(RAA) apex, coronary sinus, inferior vena cava (IVC), and
superior vena cava (SVC) [3]. Specific landmarks were
placed at the SVC-RA and IVC-RA body intersections,
corresponding to the highest lateral positions, and aligned
with the SVC and IVC at the lateral-septal confluence [9].

Subsequently, Laplace-Dirichlet solves in openCARP
cardiac electrophysiology simulation software were per-
formed to automatically identify atrial regions (PV, VC,
LAA, RAA, and CS), and universal atrial coordinates
(UAC) were calculated using previous methods [2].

2.5. Fibre Modelling

Patient-specific surface meshes were used to construct
the atrial coordinates. These coordinates integrated atrial
structures and fibres from Labarthe et al.(2014) atlas, in-
cluding endocardial and epicardial fibres, pectinate mus-
cles (PM), cristae terminalis (CT), Bachmann’s bundle
(BB) and the sino-atrial node (SAN) [2, 9]. The resulting
bilayer models included interatrial pathways [2].

2.6. Biophysical Modelling

Biophysical simulations used the human atrial ionic
model of Courtemanche et al.(1999) and a monodomain
solver within openCARP for excitation propagation [10].
The ionic model parameters were adjusted to represent per-
sistent AF remodelling and repolarisation variability [3].
AF was induced following Roney et al.(2020) method, ini-
tiating AF with initial parameters associated with four spi-
ral wave re-entries [3, 9]. Post-processing detected total
PSs, PS hotspots, and changes in rotor activity [3].

3. Results

3.1. Segmented Cohort

The atria, including PV, CS, VC, MV, LAA, and TV,
were manually segmented using 3D Slicer. Figure 2 dis-
plays LA and RA geometries of 20 individuals, highlight-
ing their morphological diversity. Challenges in segment-
ing the LAA and MV arose from unclear LA-LV bound-
aries and poor image contrast, leading to some labelling
disparities.

Figure 2. 3D representations of the segmented
anatomies of the LA and RA in the anteroposterior
(AP) view. LA regions: LSPV, RSPV, LAA, and LIPV.
RA regions: SVC, IVC, CS, and RAA.



3.2. Fibrotic Remodelling

Fibrotic modelling, based on LGE intensities, revealed
significant diversity among the 20 anatomies, as shown in
Figure 3A. Models that required corrections in clipping
and segmentation were revised, and an example clipping
is shown in Figure 3B. The diverse atrial geometry posed
challenges in landmark selection, but expert validation en-
sured accuracy. The meshes were combined to create bi-
atrial models, which were validated visually and by fibre
mapping, with two excluded due to insufficient segmenta-
tion.

Figure 3. LGE intensities projected on the 3D LA and
RA meshes to incorporate fibrosis. (A) Fibrosis mapping
showing healthy (blue) and scarred tissue (red) in the AP,
posteroanterior (PA), and right atrial oblique (RAO) views.
The colour axis indicates the IIR values. (B) Clipped LA
and RA surfaces at PV, CS, VC, TV, and MV.

3.3. Fibre Modelling

Our approach, similar to Roney et al.(2022) methods,
maps atrial structures and fibres in both the LA and RA [3].
Figure 4 shows fibre configurations in the biatrial models,
highlighting their significance in personalisation. The ex-
clusion of complex atrial meshes streamlined fibre integra-
tion, facilitating biophysical modelling.

Figure 4. Atrial fibres from Labarthe et al.(2014) atlas
were modelled using 2D UAC systems for the (1) LA
and (2) RA. (B) Epicardial and (C) endocardial surfaces
are depicted in AP and axial views as streamlines. [2]

3.4. Biophysical Models

Finite element simulations assessed AF dynamics over
15 s in a biatrial model. Figure 5 shows slower conduction
in the LA posterior walls (LAPW), indicating significantly
slower mean conduction velocity in the LA (31.7 cm/s)
than in the RA (48.2 cm/s).

Figure 5. Transmembrane potential maps from AF
simulations using openCARP software depict AF in-
duction at 0ms, 100ms, 200ms, and 300ms. Arrows indi-
cate wavefront patterns in (A) AP and (B) PA views, with
the colour bar showing transmembrane potential in mV.

Figure 6 shows PS density maps with increased rotor
activity and PS hotspots in the LAPW, suggesting re-entry
prone areas and a higher likelihood of sustained AF. The
LA exhibits a maximal phase singularity density of 3.8
rotors/cm2, while the RA has 2.1 rotors/cm2.

Figure 6. Post-processed PS density maps from AF sim-
ulations are shown in AP, PA, axial, and RAO views.
These maps show PS hotspot localisation in the LAPW.

4. Discussion

In this study, we developed biatrial models using LGE-
MRI data to predict AF inducibility in 20 patients. Rotors,
functional re-entry mechanisms in AF, are influenced by
ionic variations and scarring. Integrating RA significantly
affected AF dynamics, with PS density maps indicating in-
creased rotor activities in the LAPW, which are markers of
AF recurrence. These rotor locations were aligned with re-
gions of scar tissue identified during mesh pre-processing.

Our biatrial modelling aligns with Calo et al.(2006) find-
ings, highlighting the key role of RA re-entrant arrhyth-
mias in AF development and ablation treatment. These
studies also identified conduction issues and chaotic im-
pulses in certain atrial walls [11]. Our work extends the
study of Nagel et al.(2021) , which focussed on biatrial
statistical modelling and imaging metrics for assessing AF



activity. This study assesses AF dynamics using patient-
specific biatrial models and expands the literature on the
role of RA in AF recurrence, complementing Hopman et
al.(2023) work on RA fibrotic remodelling and ablation ap-
proaches [4,12]. This study assesses the specific effects of
RA and LA on AF recurrence, potentially informing per-
sonalised catheter ablation strategies.

The biatrial modelling framework has limitations,
particularly in manual segmentation, introducing intra-
operator variability. Although developing an autonomous
biatrial modelling pipeline is not the focus of this study,
it could minimise errors and enhance region assignment
repeatability [13]. Although model personalisation is im-
portant in identifying AF trends, our biatrial models do not
account for specific patient attributes such as comorbidi-
ties, limiting their applicability in diverse populations [3].

This study aimed to predict AF inducibility using bia-
trial models. It also offers the potential for assessing ab-
lation strategies to treat AF recurrence. Future work will
extend this work to the UK Biobank longitudinal dataset,
enabling long-term post-AF treatment outcome prediction.
Our objectives will address the challenges of inferring
missing atrial longitudinal data, constructing models from
low-resolution imaging data, and integrating ECG data us-
ing biophysical models and machine learning. These re-
search directions advance our understanding of AF mech-
anisms and streamline clinical workflows.

5. Conclusion

Our study introduces a biatrial cohort to assess AF pat-
terns and highlights the role of RA in predicting AF in-
ducibility. These findings highlight the potential of bia-
trial substrates in the development of personalised patient-
specific and population digital twins.
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