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Abstract

Identifying the site of origin in outflow tract ventricular
arrhythmias (OTVAs) is crucial for the success of radiofre-
quency ablation procedures. Despite recent progress, this
task remains challenging and too dependent on clinician’s
expertise, since origin estimation merely relied on visual
inspection of the electrocardiogram (ECG).

This study presents an automatic system to identify the
ventricular origin in OTVA with machine learning algo-
rithms. The system comprises two cascading classifier
models that utilize raw electrocardiogram (ECG) signals,
relevant ECG signal features, and clinical data. It was
trained using data from four different databases.

The final model achieved an accuracy of 95.45%. Fur-
thermore, we identified specific regions in the ECG signal,
such as the transition between the R and the S waves in V3
and V4 and the beginning of the QRS complex in V2, which
are key when estimating the OTVA origin.

1. Introduction

Ventricular Tachycardia (VT) plays a significant role in
sudden cardiac death, accounting for nearly 80% of cases,
underscoring the critical importance of accurate VT treat-
ment [1]. Within the spectrum of VT, idiopathic ventricu-
lar arrhythmias pose a unique challenge, as the underlying
mechanisms triggering these arrhythmias remain unclear.
Furthermore, the most common type originates from the
outflow tracts, and the structural and functional complexity
of these structures intensifies the difficulty in diagnosing
and planning treatment for OTVAs. This type of arrhyth-
mia can be treated with drugs or Radiofrequency Ablation
(RFA) [2].

However, the implementation of RFA has proven to be

suboptimal, leading to excessively high recurrence rates
[3]. To enhance the performance of the RFA procedure,
pre-operative planning is crucial. The goal is to identify
the optimal ablation site, known as the ectopic foci or the
site of origin (SOO) of the OTVA before the procedure.
The primary source of information for this analysis is the
ECG, as its morphology is affected in patients with OTVA
[2]. Visual inspection provides an estimate of the SOO;
specifically, it is used to determine whether the origin is in
the right or left ventricle. An incorrect estimation can lead
to a suboptimal intervention approach, increasing the inter-
ventional time. Relying solely on ECG visual inspection
may prove insufficient for SOO prediction. Recently, ad-
vanced methods have been developed to predict the right or
left ventricle outflow tract (RVOT or LVOT, respectively)
origin.

These methods include ECG visual morphology analy-
sis along with patient data, such as the one described by
Penela et. al [4], this algorithm incorporates clinical fea-
tures such as sex, hypertension, and age, and conducts an
ECG analysis based on the precordial R/S transition (de-
fined as the first precordial lead with a dominant R wave)
as well as the amplitude in V3 if the precordial transition
occurs in this lead. However, this method includes manual
thresholds when including the age and the V3 amplitude,
also, it depends on the clinician’s expertise to determine
the R/S transition.

Since premature ventricular contraction (PVC) are
present in OTVA cases [2], other methods include R/S tran-
sition of the sinus rhythm along with the transition in the
PVC to differentiate RVOT and LVOT origins [5, 6].

Doste et. al used machine learning to classify the OTVA
origin using real and simulated ECG signals [7]. Never-
theless, this approach did not include any patient data.

In the following sections, we introduce our novel pro-



posal—a comprehensive ML methodology that integrates
signal analysis methods for both simulated and real data,
patient-specific information, and an exploration of the
most relevant features. This integrated approach not only
enhances classification accuracy but also provides valuable
interpretability, empowering clinicians with insights into
the critical factors influencing treatment decisions.

2. Methods

We propose a two-stage classification system. In the
first stage, we trained a classifier model using the QRS
complexes of the different leads, following the findings of
Doste et al. [8]. In the second stage, the resulting proba-
bilities of the previous classifier are combined with patient
information (as proposed by Penela et. al [4]) to refine the
prediction. After training, feature relevance was analyzed
in both models to improve the performance and interpret
the results.

2.1. Databases

We used multi-centric 4 ECG databases: 1) DS-2496,
composed by 2496 simulated ECGs created to imitate
OTVA patients following Doste’s pipeline [9]; 2) DS-
31, which consisted on 31 cases from Hospital Clinic,
Barcelona; 3) DS-334, corresponding to an open source
database published by Zheng et al. [10]; and 4) DS-111,
which was retrieved from Hospital Teknon, Barcelona.
The latter was partially used by Penela et al. [4], and con-
sisted on 111 cases. All the data was collected according
to internal ethical committee regulations, and with written
informed consent from every patient.

DS-31, DS-334 and DS-2496 included 12-lead ECG
signals and the outcome of the patient (RVOT or LVOT
origin). DS-111 included additional information, specifi-
cally, multiple beats from each patient, including the PVC,
and the clinical information used to predict the SOO in [4].

Considering the lack of standardization in the available
databases, we adopted a two-step approach. Initially, we
used the first three databases for training the first-stage
classifier, utilizing solely the QRS morphology as input.
Following this, we applied the first classifier to extract fea-
tures from DS-111 and used these extracted features to
train the second classifier. In essence, the output of the
first classifier served as the input for the second classifier.
The overall model was tested using a subset of DS-111, be-
cause it was the only database that had both QRS complex
and patient data.

We divided the dataset into training (80%) and test
(20%) using a stratified splitting to maintain the propor-
tion on both subsets since RVOT is more common [11].
We split each database individually, and then we merged
the respective subsets of DS-2496, DS-31 and DS-334 for

the first model. Then, we used 5-fold cross-validation and
performed grid search for hyperparameters optimization in
both models.

2.2. Classification system

The classification system consists of 2 classifier mod-
els connected in cascade. The first was trained following
the guidelines set in [7]. The QRS complexes of each lead
were resampled to 10 samples and concatenated in a vec-
tor. To analyze the relevance of each QRS complex in ev-
ery lead, we used all 12 leads rather than the most rele-
vant leads previously reported, we made this decision be-
cause we wanted to include in the morphological analysis
all leads.

We tested support vector machines (SVM), multiple
layer perceptron (MLP), extra trees (ET) and random for-
est (RF) algorithms offered by scikit-learn [12]; and the
XGBoost solution for python by dmlc [13], and we com-
pared their performance using the test subset.

The design of the second model drew inspiration from
the weighted hybrid algorithm proposed by Penela et al.
[4]. To enhance the model’s ability to generalize and
prevent overfitting, we computed the precordial transition
rather than relying on clinician-reported values. Addition-
ally, we removed any age or V3 amplitude-related thresh-
olds.

We predicted the outcome of the training dataset with
the first model and used the probability per class as an in-
put for the second model, along with the amplitude of the
V3 lead, the calculated R/S transition, and the clinical fea-
tures of the patient. Then, we followed the same procedure
as for the first model to train the second model.

Since the precordial transition lead depends on the car-
diac electrical axis in the horizontal plane and the clinical
features of the patient [14], we used the information of the
sinus rhythm to standardized the R/S transition. We calcu-
lated the R/S transition for both beats and then computed
them as a single feature with the subtraction of both values.

To calculate both R/S transitions, we delineated the
ECG signal of each patient using the delineation convo-
lutional neural network designed by Jimenez-Perez et al.
[15]. Then, the cardiac cycles were separated, , extracting
the PVC beat and the immediately preceding one. From
here, we segmented the QRS complexes and calculated the
R/S ratios on the precordial leads for both beats.

Subsequently, we analyzed the relevance of the features
in the first model to improve the classification process by
identifying, and keeping the most relevant features that had
clinical sense. We used RF models and calculated the rele-
vance of each feature using the Gini’s coefficient. Given
that each feature represented a 10% of the original sig-
nal, we were able to determine which sections of the ECG



were the most relevant for the classification. These sec-
tions were used to train the second model.

3. Results

The accuracies obtained in the testing subset for the
first-stage models are reported in Table 1.

Table 1. Accuracies obtained for the first model using
different ML algorithms. The test set was composed by
20% of DS-2496, DS-31 and DS-334.

Model Accuracy LVOT recall RVOT recall
RF 98.39% 99.02% 98.35%
SVM 92.10% 93.39% 89.43%
MLP 95.73% 98.82% 96.00%
ET 98.93% 99.21% 98.59%
XGBoost 98.59% 99.06% 98.06%

Feature relevance from RF was analyzed per lead and
per individual section. Precordial leads showed the highest
relevance, accumulating 80% between V1 and V6. Among
them, V2, V3 and V4 were the most relevant. When ana-
lyzing the different sections of these leads, we found that
the most relevant part of the QRS complexes in V3 and V4
was the section between 60% and 70% of the QRS length,
which correspond to the R/S section, while in V2 the most
relevant section was between 10% and 20% of the QRS
complex, which corresponded to the beginning of the Q
wave, as shown in Figure 1.

Figure 1. Feature relevance for leads V2, V3 and V4.
Top row: Relevance colormap (darker blue means higher
relevance). Bottom row: average signal per lead (black)
and the corresponding standard deviation (red).

These amplitudes were included as additional features in
the second-stage classifier model. Also, we tested the DS-
111 using RF, ET and XGBoost, since these algorithms
achieved the best performance. The best results in the sec-
ond model were obtained when using XGBoost as the first
model. We got 73% of accuracy when testing the first

model on DS-111. The second model included the infer-
ence of the first model, the clinical features and the relevant
amplitudes found after the feature relevance analysis, the
overall model achieved 95.45% of accuracy. The accura-
cies obtained in the test subset for the second-stage models
are reported in Table 2.

Table 2. Accuracies obtained for the overall model using
different ML algorithms. The test set was composed by
20% of DS-111.

Model Accuracy LVOT recall RVOT recall
RF 68.18% 50.0% 75.0%
SVM 86.36% 50.0% 100.0%
MLP 95.45% 83.33% 100.0%
ET 77.27% 50.0% 87.50%
XGBoost 81.81% 83.33% 81.25%

When analyzing the feature relevance in the RF model,
we found that the most relevant feature was the amplitude
in V2 with 15.36%. Amplitudes accumulated 43% of the
relevance, R/S transition accumulated 11.08%, the clinical
features reached 19.9% (being age the most relevant fea-
ture with 11.9%) and the class probability obtained from
the first model got 25.28%.

4. Discussion and conclusions

We developed a classification algorithm to identify the
site of origin (left/right ventricle) in OTVA cases. Af-
ter training multiple models, and analyzing the partial re-
sults to improve the outcome we reached an accuracy of
95.45%.

The analysis of the first model showed that the most rel-
evant features were in V2, V3 and V4, which aligns with
consistent with findings in previous works [4, 7, 8]. We
went a step further and analyzed the feature relevance on
segments of 10% of the signal, finding that the most rele-
vant segments were located on the transition between the
R and the S waves in V3 and V4 and the beginning of the
QRS complex in V2. This is an important outcome since
most of the algorithms developed to find OTVA SOO con-
sider the central zone of the precordial leads as the most
problematic to differentiate RVOT and LVOT [4–8,11,14].

For the second model, we included clinical features pre-
viously reported [4], avoiding threshold choices or data
that depends on the clinician expertise to maximize the
generalization power of the algorithm. We avoid thresh-
olds by directly using age and we prevent human error by
calculating the R/S transition using both sinus rhythm and
PVC beat transitions.

The posterior feature relevance analysis showed how the
inclusion of the amplitudes boosted the performance of the



model, while the R/S transition was less relevant. The clin-
ical features reached 19.9% of relevance with just 3 fea-
tures, which shows the potential of including clinical fea-
tures for the classification. Finally, class probability from
the first model reached 25.28% of the total relevance, being
the second most relevant group. This suggests that work-
ing on previous weaker classifiers may increase the perfor-
mance of the final model.

This system was designed with simple and interpretable
models and the analysis of the feature importance allowed
us to enhance the performance in classification while pre-
serving the clinical validity. However, this approach has
some limitations on its different stages. First, when down-
sampling the signals to 10 samples, most of the high fre-
quency components were discarded. Furthermore, the time
information may not be accurately represented since when
concatenating the different leads, simultaneously ocurring
events may be lost. Second, the feature relevance analy-
sis may depend on the performance of the RF algorithm,
which is relatively low in the second stage when compar-
ing with the other classifier models. Finally, the system
was tested in a dataset acquired in a unique center. To
assess the robustness of the system, it should be tested
on a multicenter dataset, despite these limitations, the ap-
proach seems promising, and the methodology could be
extended to find specific SOO with a high accuracy and
interpretability.
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