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Abstract

Cardiovascular problems are the most important mani-
festation of the Chagas disease (CD), which can cause ar-
rhythmias, heart failure and thromboembolisms. Echocar-
diography (ECO) provides diagnostic tools, mainly con-
sidering left ventricular systolic dysfunction (LVSD), being
more expensive and difficult to access than electrocardio-
graphy (ECG).

The present work aims to investigate strategies for ex-
tracting ECG parameters for predicting LVSD, defined as
a left ventricular ejection fraction (LVEF) determined by
ECO below a given threshold, which may be 35, 40, 45, 50
or 55%. We process a dataset containing single-lead ECG
holter signals from 219 CD patients obtained from Univer-
sity Hospital Clementino Fraga Filho – Federal University
of Rio de Janeiro, Rio de Janeiro, Brazil. The approach
proposes the segmentation of the original signals in inter-
vals during: (a) 5 minutes; (b) 10 minutes; (c) 15 minutes
and (d) 30 minutes. For each scenario, we obtain statis-
cal measures related to waveform amplitudes and dura-
tions, and also statistical measures related to wavelet de-
composition coefficients, heart rate variability parameters
and non-linear analysis. Then, a set of Machine Learning
(ML) algorithms are applied for each scenario to discrimi-
nate between LVSD patients and non-LVSD patients.

As results, we obtain the highest performance for 15-
minute ECG intervals: recall 72% +- 9% and Area under
ROC curve 0,75 +- 0,09 for Gradient Boosting. The results
indicate the feasibility of using short-term one-channel
ECG signals to predict reduced LVEF.
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1. Introduction

Chagas disease (CD), caused by the protozoan Try-
panosoma cruzi, is one of the 17 neglected tropical dis-
eases, according to the World Health Organization, and
continues to be a chronic health problem, despite the con-
trol of its transmission. As a frequent and severe manifes-

tation of CD, the chronic Chagas cardiomyopathy (CCC) is
a leading cause of morbidity and death in South America,
and its symptoms arise from heart failure, cardiac arrhyth-
mias, and thromboembolism [1]. Heart failure is a chronic
and progressive disease, affecting around 37.7 million peo-
ple worldwide, and a similar number of people have unde-
tected or asymptomatic left ventricular systolic dysfunc-
tion (LVSD) [2]. The research of algorithms for LVSD
detection based on ECG processing is highly useful and
attractive because ECGs are accessible, inexpensive, and
ubiquitous.

A systematic review in [3] presents a detailed compari-
son of fifteen approaches concerning artificial intelligence-
enabled electrocardiography (AIeECG) to detect LVSD,
exploring similarities and differences in relation to thresh-
olds for left ventricular ejection fraction (LVEF), study
populations and the use of natriuretic peptides. From the
studies considered eligible for that investigation, just one
approach has applied the AI algorithm using a single-lead
ECG, achieving areas under the curves of 0.874 and 0.929
during the internal and external validation, respectively,
considering hospitalized population that does not belong
to a specific group and the threshold of LVEF <40% [4].

At this context, the present work address the issue of
predicting LVSD within patients with Chagas disease. The
proposed algorithm aims to provide a tool for screening
CD patients for early detection of LVSD.

2. Methodology

2.1. Data description

The Clementino Fraga Filho University Hospital of the
Federal University of Rio de Janeiro (HUCFF-UFRJ) is a
regional reference center in Brazil concerning Chagas dis-
ease. The holter ECG signals, which were sampled at a
128-Hz sampling frequency, were acquired from 219 pa-
tients with CCC (chronic chagasic cardiomyopathy), col-
lected between 1992 and 2013. As for gender, the signals



belong to 125 (57.1%) women and 94 (42.9%) men. Re-
garding age, 1.3% of the patients are between 15 and 20
years old, 7.1% between 20 and 30 years old, 25% be-
tween 30 and 40 years, 34.4% between 40 and 50 years,
30.8% between 50 and 60 years, and 3.9% between 60
and 70 years old. Of all the analyzed signals, only one
belonged to a patient who had some other type of heart
disease. Regarding the target class, 75 (20%) of the
signals were obtained from patients with left ventricu-
lar ejection fraction lower than 40%, 159 (42,5%) were
obtained from patients with LVEF lower than 45%, 180
(48,1%) from patients with LVEF lower than 50%, and
203 (54,28%) from patients with LVEF lower than 55%.
The local ethics committee approved the research (number
45360915.1.1001.5262).

2.2. Feature Extraction

At this stage, different scenarios are proposed to cap-
ture parameters that are potentially sensitive to the pres-
ence of left ventricular systolic dysfunction. These scenar-
ios concern the duration of the analyzed ECG signal inter-
val, which can be: (a) 5 minutes; (b) 10 minutes; (c) 15
minutes; and (d) 30 minutes. Thus, initially applying the
discrete wavelet transform (DWT), with Daubechies-4 as
mother function, we obtain eight levels of decomposition.
For each level of decomposition, we obtain for each group
of detail coefficients and for the last group of approxima-
tion coefficients the following statistical metrics: mean,
variance, maximum value, minimum value, skewness, and
the 1st, 2nd, 5th, 10th, 25th, 50th, 75th, 90th, 95th, 98th
and 99th percentiles. Furthermore, we also obtain as fea-
tures the sum of the amplitudes of the coefficients of the
fast Fourier transform of the ECG interval in the following
ranges: 0-1.5Hz; 1.5 - 4Hz; 4 - 8Hz; 8 - 20Hz; 20 - 50Hz;
50 - 64Hz.

Next, we move on to obtaining the second group of pa-
rameters. First, we perform the detection and segmen-
tation of the QRS complex. Concerning QRS detection,
we have adopted our already validated approach, which is
based on Hilbert and Wavelet transforms, first-derivative
and adaptive threshold technique [5]. For delineation, that
is, the precise detection of the onset and offset of each QRS
complex, we adopted the phasor transform technique [6],
which achieves to convert each instantaneous ECG sam-
ple into a phasor. Thus, considering the ECG signal of N
samples as x[n], the phasorial transform is defined from
the following equations

y[n] = Rv + j.x[n]. (1)

ϕ[n] = tan−1(
|x[n]|
Rv

), (2)

M [n] =
√
R2

v + x[n]2, (3)

where the value of Rv determines the degree with which
waveforms are enhanced in the phasorial signal ϕ[n]. Due
to the sensitivity of the non-linear transformation given by
the equation 3, we can associate the QRS start and end
points with local minima or edges of subtle variations for
ϕ[n].

Next, we detect T-wave peak and T-wave end, also based
on the phasorial transform applied over each interval start-
ing at each QRS offset and during half of the current R-R
interval. Taking the Rv parameter as 0.1, the phasor trans-
form of the aforementioned searching interval is obtained,
and then we identify among the samples with the highest
amplitudes within ϕ[n] signal a local maximum of M(n)
for T-wave peak. For T-wave end detection, we compute
de first derivative of the signal ϕ[n] within a searching win-
dow beginning at the T-wave peak location and ending 90
ms after. Then, starting at the sample corresponding to
the minimum of the derivative of ϕ[n] and ending at the
sample corresponding to the maximum of the derivative of
ϕ[n], we associate the T-wave end location to the sample
corresponding to the first detected zero-crossing.

Once we have delineated each QRS complex and each
T-wave, we compute the following measures: each beat-
to-beat interval (R-R interval), duration of each QRS com-
plex, amplitude of each QRS complex, amplitude of each
T-wave, duration of each interval from a given QRS-onset
to the subsequent T-wave end (named QTend), duration of
each interval from a given QRS-onset to the subsequent
T-wave peak (named QTpeak), duration of each interval
from a given T-wave end to the subsequent QRS-onset
(named TendQ), duration of each interval from a given T-
wave peak to the subsequent QRS-onset (named TpeakQ),
the ratio between each QTend interval and the subse-
quent TendQ interval (named QT/TQ), the ratio between
each QTpico interval and the subsequent TpicoQ interval
(named QTp/TpQ), the percentage from all the measures
of QT/TQ for which QT/TQ > 1 (named QT/TQ−r1),
the percentage from all the measures of QTp/TpQ for
which QTp/TpQ > 1 (named QTp/TpQ − r1), the du-
ration concerning the distance beween each T-wave peak
and each T-wave end (named TpTe), and unevenness of
the ST segment, computed as the difference between the
amplitude of the QRS-onset and the amplitude of the QRS-
offset. As an illustrative example of the extracted parame-
ters pertaining the the fisrt group of features, we present in
Figure 1 a seguence of QTend intervals.

Taking into consideration the extracted features of all
segments within the different scenarios for durations of
analysis intervals, we compute statistical functions which
work as data compressors. Therefore, we define as in-
put parameters for the machine learning models, regarding



Figure 1: Examples of QTend interval durations extracted
from an ECG excerpt.

the first group of characteristics, the following measures:
mean of R-R intervals, standard-deviation of R-R inter-
vals, median of the R-R intervals, median of the QTend
intervals, median of the QTpeak intervals, 5th-percentile
of the TendQ intervals, 5-th percentile of the TpeakQ in-
tervals, the ratio QT/TQ− r1, the ratio QTp/TpQ− r1,
the 98-th percentile of the ratios QT/TQ, the 98-th per-
centile of the ratios QTp/TpQ, the median of the QRS
durations, the 5-th and the 98-th percentile of the QRS du-
rations, the median of the QRS amplitudes, the 5-th and
the 98-th percentiles of the QRS amplitudes, the median of
the T-wave amplitudes, the 5-th and the 98-th percentiles
of the T-wave amplitudes, the median of the measures of
unevenness of the ST segment, the 5-th and the 98-th per-
centiles of the unevenness of the ST segment.

Regarding the second group of characteristics, which
refers to heart rate variability parameters, we estimate
power spectral density (PSD) [7] and compute the follow-
ing input parameters: locations of peaks for VLF (Very
Low Frequency), LF (Low Frequency) and HF (High Fre-
quency) components, the absolute power for each com-
ponent VLF, LF and HF, the power in normalizes units
for LF and HF, the relative (percentual) powers for VLF,
LF and HF components, and the ratio between LF power
and HF power. Afterwards, we compute the following
time-domain metrics as input parameters: mean normal-
to-normal (NN) intervals, SDNN, mean and standard-
deviations of the intantaneous heart-rate, SDANN,SDNN
index, RMSSD, NN50, pNN50, and HRV index [8]. Fi-
nally, we considerate as input parameters the components
corresponding to short-term (SD1) and long-term (SD2)
variations from Poincaré plots [9].

Finally, regarding the fourth group of parameters (fea-
tures related to theory of dynamic systems), we apply re-
currence quantification analysis (RQA) [10]. Therefore,
considering the time-series of beat-to-beat intervals, ob-
tained from a given ECG time duration, we compute the
following metrics as input parameters for the models: Re-
currence rate (RR); Determinism (DET); Entropy (ENT);

and Maximal diagonal line length (LMax) [11].

2.3. Applying Machine Learning Models

After obtaining all the set of features, we derive thirty
different training and test subsets for each scenario (ECG
intervals during 5, 10, 15 and 30 minutes), considering
75% of samples for training and 25% samples for test.
We chose to investigate four possible thresholds concern-
ing the definition of reduced LVEF, e.g. < 40%, < 45%,
< 50% and < 55%. In this work, we applied a binary
classification, where the class 0 represents a non-reduced
LVEF and the class 1, a reduced LVEF (positive class).

The computing experiments were performed using
Python 3.0 and Jupyter Notebook platform (sklearn li-
brary). Below, we detail the list of applied classifiers and
the intervals where we preset the models to seek optimal
values thorugh a grid search:

• KNN:
– Number of neighbors: 1, 3, 5, 7, 10, 11, 13, 15, 17, 19.

• Random Forest:
– Number of estimators: 10, 20, 30, 40, 50, 60, 70, 80, 90,

100;
– Maximum depth: 3, 6, 10, 15, 20.

• Multi-Layer Perceptron:
– Activation function: hiperbolic tangent and ReLU;
– Learning rate: constant and adaptive;
– Hidden layer sizes: [10,10], [30,10], [20,10,5].

• Gradient Boosting:
– Loss function: log-loss, exponential;
– Number of estimators: [10, 30, 50, 70];
– number of features to consider when looking for the best

split: ’sqrt’, ’log2’.
• Decision Tree:
– Criterion: [’gini’, ’entropy’, ’log-loss’];
– Maximum depth: [80, 100, 120].

• Extreme Gradient Boosting:
– Number os estimators: [10, 30, 50, 70, 100];
– Learning rate: [0.1, 0.3]
– Maximum depth: [3, 6].

2.4. Results

The results for the applied Machine Learning models
were obtained considering two possible scenarios concern-
ing the class imbalance: (1) using all the available samples
from both classes (reduced and non-reduced LVEF); (2)
applying undersampling over the majority class and con-
sidering a perfect balance between the two classes for both
training and testing stages.

Considering the first scenario, the threshold related to
reduced LVEF which yields the best results was LV EF <
55%. In table 1, we illustrate the classification results,
metrics area under the curve (AUC), recall and F1-score,



ECG TD AUC Recall F1-score

5-min 0.66 ±0.04 0.73 ±0.09 0.66 ±0.03
10-min 0.66 ±0.05 0.72 ±0.09 0.66 ±0.04
15-min 0.66 ±0.05 0.71 ±0.09 0.66 ±0.06
30-min 0.65 ±0.04 0.72 ±0.09 0.65 ±0.04

Table 1: Results for reduced LVEF detection (< 55%) con-
sidering unbalanced classes for Gradient Boosting

ECG TD AUC Recall F1-score

5-min 0.73 ±0.09 0.71 ±0.10 0.70 ±0.07
10-min 0.74 ±0.09 0.71 ±0.10 0.69 ±0.08
15-min 0.75 ±0.09 0.72 ±0.09 0.70 ±0.07
30-min 0.74 ±0.09 0.72 ±0.09 0.70 ±0.07

Table 2: Results for reduced LVEF detection (< 40%) con-
sidering balanced classes for Gradient Boosting

for the ECG time durations (TD) corresponding to 5 min-
utes, 10 minutes, 15 minutes and 30 minutes for Gradient-
Boosting classifier, which obtained the highest values for
AUC. Considering the second scenario, the threshold re-
lated to reduced LVEF which yields the best results was
LV EF < 40%. In table 2, we illustrate the corresponding
results using Gradient-Boosting classifier.

3. Conclusion

This work has proposed a methodology for ECG signal
feature extraction which aims to detect left ventricular sys-
tolic dysfunction within patients with chronic chagasic car-
diomyopathy. The computing experiments run over ECG
holter signals, and a diversified group of features were ob-
tained, considering samples of ECG intervals during 5, 10,
15 and 30 minutes. Different thresholds concerning left
ventricular ejection fraction were analysed, and the over-
all best results were obtained considering the threshold (<
40%) for characterizing a reduced LVEF. The obtained va-
lues for AUC, Recall and F1-score suggest the capability
of the models to recognize patterns related to heart failure
concerning the ECG signals from Chagasic patients. Fu-
ture work will consider the application of feature selection
approaches as well as the combination of features derived
from convolutional neural networks with the features pro-
posed here.
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[11] Araújo NS, Reyes-Garcia SZ, Brogin JA, Bueno DD, Cav-
alheiro EA, Scorza CA, Faber J. Chaotic and stochastic dy-
namics of epileptiform-like activities in sclerotic hippocam-
pus resected from patients with pharmacoresistant epilepsy.
Plos Computational Biology 2022;18(4):e1010027.

Address for correspondence:

Dr. João Paulo do Vale Madeiro.
Department of Computing Science, Federal University of Ceará,
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