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Abstract

Long-term cardiac monitoring with conventional tech-
nology requires huge resources. This problem can be ad-
dressed using portable devices. However, they acquire
ECGs hardly disturbed by noise, and accurate quality as-
sessment (QA) of these recordings is crucial. Recently,
pre-trained convolutional neural networks (CNNs) have
reported promising performance in that context, but they
demand a lot of computational resources, limiting their
use in portable systems. Hence, this work aims to explore
the ability of a lightweight CNN, with far fewer parame-
ters than well-known pre-trained CNNs. Applying trans-
fer learning is common in many classification tasks, so the
performance of the network was compared when trained
from scratch and when pre-trained on a freely available set
of natural images. Moreover, the well-known GoogLeNet
model was also considered for comparison. All CNNs were
fine-tuned with a balanced set of 20,000 5 second-length
ECG segments and validated externally. Results show that
GoogLeNet performed slightly better than the pre-trained
lightweight CNN. However, proposed models were about
12 times faster to classify each ECG interval. These find-
ings highlight the suitability of pre-training a CNN using
natural images, retaining a comparable performance in
ECG QA than much deeper networks but reducing notably
the computational cost.

1. Introduction

The resting ECG has become the standard test for diag-
nosing the most common cardiovascular diseases (CVDs).
However, it is insufficient for determine cardiac abnormal-
ities of an intermittent and unpredictable nature, which
require continuous monitoring [1]. Thus, the utilization
of novel wearable devices that enable continuous ECG
recordings over extended periods has recently emerged [1].
Therefore, these new methods for screening diverse CVDs,
such as paroxysmal atrial fibrillation (AF) which is the
most common type, and it is associated with high mor-

bidity and a risk factor for ischemic stroke [2] represent a
short-term breakthrough.

Despite the high possibilities of these novel systems, ac-
quiring the ECG signal during the patient’s everyday ac-
tivity compromises its overall quality [3]. To minimize
misinterpretation of the ECG recordings, it is critical to
address the issue of automatically evaluating their over-
all quality, especially under severe disturbances associated
with the acquisition environments, i.e. motion artifacts,
impulse noise, or electrode contact noise [4]. Not only
the environment can corrupt the ECG signal but also typ-
ical disturbances inherent to acquisition systems such as
powerline interference, muscular contractions, and base-
line drifts. Therefore, the first step in any ECG processing
system must be to assess the signal quality.

Unfortunately, the vast volume of data registered makes
the manual visualization of whole signals unfeasible. For
this reason, state-of-the-art methods for automatically as-
sessing the quality of long-term ECG recordings have
shown significant advancements making the artificial in-
telligence systems the latest trend in developing this task.
Despite classical signal-processing algorithms were based
on extracting fiducial points and morphological charac-
teristics from ECG recordings using machine learning
techniques obtaining promising results [5], recent deep
learning algorithms have surpassed those approaches. It
has been demonstrated that deep learning methods have
superior generalization capabilities, hence they present
a greater ability to distinguish between high- and low-
quality ECG segments. Furthermore, these algorithms
may deal with raw ECG data without requiring additional
phases of pre-processing or feature extraction [6].

Among the artificial intelligence methods, convolutional
neural networks (CNNs) have been established as the most
common approach for several tasks such as classification,
regression, or detection. The large volume of data nec-
essary for training a CNN from scratch necessitates the
use of transfer learning techniques, which is the process
of fine-tuning the knowledge obtained by previously pre-
trained networks on a new task [7]. Several research teams



have developed and shared their own CNN models such
as GoogLeNet [8]. However, these models typically have
millions of hyperparameters. For this reason, the proposed
work aims to investigate how CNNs perform in relation to
pre-training for the specific task of assessing the quality of
ECG signals [9]. Moreover, a lightweight CNN structure
with a limited number of layers was developed to assess its
performance in comparison to GoogLeNet.

2. Materials and methods

2.1. Databases

The material selected to develop the proposed work can
be divided into two main groups. Firstly, the dataset uti-
lized for training the Light-CNN from scratch is based on
the original set from ImageNet [10] but is limited to 70
classes of various objects, each with 500 samples, reach-
ing a total of 35,000 samples. Since computational and
time resources required for training a CNN are substantial,
this option was selected as the best trade-off between data
and resources.

On the other hand, the second group comprises the
dataset belonging to ECG recordings. To ensure the gener-
alization capability and to prevent overfitting, two separate
ECG databases acquired from different devices were uti-
lized i.e. a proprietary database (PDB) and the public Phy-
sioNet/CinC Challenge 2017 database (PC2017DB) [11].
The acquisition system for the PDB consisted of a textile
vest with a sampling rate of 250 Hz with 12 bits of res-
olution. Two experts labeled the different high- and low-
quality ECG segments, identifying as noisy signals those
ones where the R-peaks could not be clearly differenti-
ated. This dataset contains 20,000 5 second-length ECG
excerpts which were evenly divided across the two groups.
It is worth noting that the high-quality class includes both
normal sinus rhythm (NSR) and AF episodes. This dataset
was used to develop the fine-tuning process in the three
different proposed attempts.

The open-source data from PC2017DB is utilized as a
testing set for each conducted experiment. The acquisition
system consists of a portable device that registers the elec-
trical activity of the heart on demand using fingerprints.
The sampling frequency is set as 300 Hz with a resolution
of 16 bits. The dataset includes four different labels, i.e.
AF, NSR, other rhythms, and noisy signals. This dataset
was formed of 48,607 5 second-length ECG segments that
were severely unbalanced between the two groups. Specif-
ically, 47,439 belong to the high-quality class and 1,168
belong to the low-quality class.

2.2. ECG transformation

Following the guidelines of previously published pa-
pers [6], CNNs were utilized to discern between high- and
low-quality segments in long-term ECG recordings [6,12].
Traditionally, CNNs have a special ability to deal with
2-D matrices as inputs, and GoogLeNet is not an excep-
tion [8]. For this reason, a previous step that converts
ECG recordings into images is mandatory. Hence each
5 second-length raw ECG signal were turned into images
using a Continuous Wavelet Transform (CWT) and apply-
ing a colormap [13]. The choice of this transformation
is deliberated since it has been demonstrated that CWT
enhances aspects of quasiperiodic non-stationary signals,
such as ECG [13]. The main features of CWT configura-
tion can be found in [6].

2.3. GoogLeNet architecture

Among the pre-trained networks available for the free
utilization of transfer learning, GoogLeNet is one of the
most extended and utilized [8]. It becomes famous for
winning the ImageNet Challenge 2,014 [10] and has the
ability to distinguish among 1,000 different image classes.
On the other hand, the main novelty of this architecture is
the composition of several parallel branches, in contrast to
previous structures that stack exclusively a series of lay-
ers. This approach allows increasing the depth reducing
the computational cost. The inception module is the piv-
otal key of this model, which is a block composed of ker-
nels with different sizes (1× 1, 3× 3, 5× 5) placed in par-
allel. In this way, the spatial information belonging to dif-
ferent scales is extracted, either fine or coarse grain levels.
Basically, GoogLeNet is formed by nine inception mod-
ules, besides two convolutional layers, four max-pooling
layers, three average pooling layers, five fully-connected
(FC) layers, and three soft-max layers. In addition to that,
the activation function as rectifier linear units (ReLU) or
dropout regularization is part of the architecture. Thus, a
depth of 22 learnable layers and 6.7 million parameters are
the features of GoogLeNet.

2.4. Proposed Light-CNN architecture

To start with, it is necessary to define what qualifies as
a lightweight CNN. For reference, a well-known design is
SqueezeNet, which contains around 1.24 million parame-
ters [14]. The proposed architecture is composed of four
layers with learning ability, where three are convolutional,
and the last one is a FC layer. The first convolutional layer
has a spatial dimension of 7 × 7 with 128 kernels with a
stride of 5. The second convolutional layer reduces the
size of the first one and uses filters of dimension 4×4 with
128 kernels. The last convolutional layer is composed of



Table 1. Description of the full architecture of the pro-
posed Light-CNN. The layer column refers to the given
names of each layer. As can be seen in the table, only four
layers have learnable parameters.

Layer Type Activations Learnables
Input Image input 227× 227× 3
Conv. 1 2-D convolution 45× 45× 128 18,944
ReLU 1 Activation funct. 45× 45× 128
MP 1 2-D max. pooling 22× 22× 128
Conv. 2 2-D convolution 10× 10× 128 262,272
ReLU 2 Activation funct. 10× 10× 128
MP 2 2-D max. pooling 9× 9× 128
Conv. 3 2-D convolution 7× 7× 256 295,168
ReLU 3 Activation funct. 7× 7× 256
MP 3 2-D max. pooling 6× 6× 256
FC Fully-connected 1× 1× 70 645,190
Softmax Softmax 1× 1× 70
Class. Output 1× 1× 70

384 kernels with a size of 3 × 3 and 256 kernels. After
that, the last learnable layer is a FC layer with 70 neurons,
corresponding with the number of classes able to classify.
Moreover, the convolutional layers are followed by ReLU
as activation functions and a max pooling layer to reduce
the spatial dimensions of the feature map. Behind the FC
layer, a softmax classifier assigns the probabilities to each
class prior to the output layer. A detailed analysis of the
whole architecture along with the activations and learnable
parameters in each layer are presented in Table 1. Finally,
the proposed architecture has a total amount of 1,221,574
parameters and a depth of 4 layers.

2.5. Performance analysis

In consequence, the experiment has three different
configurations: the Light-CNN without pre-training; the
Light-CNN trained with the set of ImageNet 70; and fi-
nally, GoogLeNet, trained with the whole set of ImageNet.
All three approaches were submitted to a fine-tuning pro-
cess using the PDB dataset. Usually, to apply the transfer
learning technique, the architecture of CNNs needs to be
adapted to the new task. Whereas the Light-CNN with-
out pre-training was designed to differentiate two classes,
the pre-trained Light-CNN was reconfigured to classify
from 70 down to only two classes. Moreover, GoogLeNet
changed the last part of the network, readjusting the num-
ber of neurons from 1,000 to 2 i.e. to distinguish between
high- and low-quality ECG excerpts. Note that in the three
conducted experiments, the training stage was repeated 10
times using a training batch size of 32 and 10 epochs, while
averaging the classification results obtained in the testing
phase. Approximately, the testing set comprises 98% of
excerpts belonging to the high-quality class whereas only

about 2% belong to the low-quality class. For this reason,
besides the typical statistics of sensitivity (Se), specificity
(Sp), and accuracy (Acc), the balanced accuracy was also
obtained (BAcc). The execution time of processing each
5 second-length ECG interval was measured to assess the
performance.

3. Results

Table 2 depicts the outcomes for each conducted experi-
ment along with the classification time for the three CNN-
based models. As shown, GoogLeNet achieves slightly
better classification rates than the Light-CNN when the lat-
ter is pre-trained. However, it has been demonstrated that
the lightweight models are about 12 times faster in classi-
fying each 5 second-length ECG excerpt than GoogLeNet.
Conversely, the model with empty weights has reported a
drop in all values of Se, Sp, Acc, and BAcc. Balanced
values of Sp and Se are always desired, hence only a dif-
ference of about 5% was observed among the pre-trained
models whereas this difference increases to 16% in the
model without pre-training.

4. Discussion

The outcomes have shown that networks that have been
pre-trained using a set of diverse natural images improve
their ability to generalize when used for different classifi-
cation tasks. In the case of GoogLeNet, the ECG quality
assessment significantly improved the classification per-
formance compared with pre-trained Light-CNN. There is
a strong relationship between the dataset utilized for the
pre-training and the final results. Whereas GoogLeNet was
originally designed to distinguish between 1,000 different
classes, the Light-CNN model was designed to classify be-
tween only 70 classes. For this reason, better values of Se
were provided by GooglLeNet since the high-quality class
is more difficult to detect than the low-quality class. Con-
sequently, the Light-CNN without pre-training has a lower
ability to generalize and trends to achieve better values of
Sp, since the classifier is prone to assigning ECG excerpts
as low-quality class due to the random nature of ECG seg-
ments affected by noise or artifacts. Moreover, another
interesting finding is that the Light-CNN can perform in a
similar way as deeper networks. The proposed architecture
has only 4 learnable layers, whereas GoogLeNet has 22
layers; similarly, the suggested structure has 5 times fewer
parameters than GoogLeNet, which as expected, means a
much shorter processing time (12 times).

Even though it is uncommon to find works with the same
aim in the literature, the results obtained in previous stud-
ies proposing lightweight CNN architectures are aligned
with the present research. For instance, Garg and Singh
compared the performance of a proprietary lightweight



Table 2. Classification outcomes obtained by the three different CNN models along with the time assessing each 5 second-
length ECG interval.

Network Se Sp Acc BAcc Time/ECG interval (ms)
Light CNN (Empty weights) 0.776 0.934 0.780 0.855 0.65
Light CNN (Pre-trained on ImageNet 70 ) 0.836 0.884 0.836 0.860 0.64
GoogLeNet (ImageNet) 0.887 0.841 0.886 0.864 7.94

CNN model with previous pre-trained CNN architectures 
such as ResNet-50, Inception-V4, or MobileNet-V2 [15]. 
They achieved similar output results, even outperforming 
previous works in the context of breast cancer classifica-
tion. Additionally, the execution time was reduced since 
fewer parameters were involved. In the same way, Huang 
and Liao developed a lightweight CNN structure concern-
ing AlexNet and EfficientNetV2 aimed to detect COVID-
19 on X-ray and CT images [16]. The algorithm was tested 
on several image datasets, and they obtained comparable 
classification values than previous works, using a CNN ar-
chitecture composed of less than 800,000 parameters.

5. Conclusions

Developing and training a lightweight CNN from 
scratch for assessing the quality of long-term ECG record-
ings could be both a very challenging and time-consuming. 
Nonetheless, it is worth because of the favorable trade-
off between speed and performance compared to heavier 
well-known complexes pre-trained CNNs.
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