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Abstract

Life-threatening ventricular arrhythmias (LTVA) pre-
diction in individuals without cardiovascular disease re-
mains a major challenge. We tested the performance of
a multilayer convolutional neural network (CNN) using
ECG signals, age and sex. We split 86,603 individuals
from the UK Biobank study into a training (90%) and a test
(10%) set. In the training set, we trained a multilayer CNN
using 15-second ECGs at rest from lead I, age and sex as
inputs. The output was the probability of LTVA within a
12-year follow-up. The CNN model consisted of a four-
layer CNN (128, 128, 256 and 256 channels, kernel sizes
of 3) and a single attention layer. Age and sex were in-
cluded as external inputs to the final layer. In the test set
(0.9% LTVA events), the CNN’s prediction led to a me-
dian AUC of 0.601, and a specificity of 0.287 for a sensi-
tivity of 0.750. We set a threshold at the CNN’s prediction
value maximising the sum of specificity and sensitivity in
the training set. Survival analyses showed a hazard ratio
(HR) of 1.396 (P = 0.021) for individuals with a CNN'’s
prediction value > threshold, versus those with a CNN'’s
prediction value < threshold. A multilayer CNN model us-
ing 10-second ECG data from lead I, together with infor-
mation on age and sex, can stratify individuals at risk of
LTVA. Our findings support the potential utility of wear-
ables for accessible screening in the general population.

1. Introduction

Life-threatening ventricular arrhythmias (LTVA) may
occur before any warning or previous diagnosis of under-
lying heart disease in 50% of cases [1]. Population-based
screening for LTVA is challenging because the yearly in-

cidence in the general population is low [2, 3] and cur-
rent strategies are heavily reliant on imaging assessment
of ventricular function. There is a lack of easily accessi-
ble and non-invasive methodologies to accurately predict
individuals at high risk.

The electrocardiogram (ECG) is an ideal candidate for
large-scale screening, especially with the recent advances
in the development and availability of wearable devices
[4]. Advanced artificial intelligence (AI)-based methods,
like convolutional neural networks (CNN) are able to iden-
tify subtle variations across the ECG signal that might in-
dicate an unknown underlying cardiac pathology, but may
be missed by previously proposed ECG indices [5, 6].

In this work, we trained a multilayer convolutional NN
(CNN) using 10-second 1-lead ECGs, age and sex to pre-
dict LTVA in middle-age volunteers without cardiovascu-
lar disease.

2. Materials and Methods

2.1. Study design

We analysed ECG recordings from 86,603 individuals
from the UK Biobank study (application 8256, the study
was approved by an institutional review committee and all
subjects gave informed consent) who either participated in
an exercise bicycle test (N = 51,444) or in the imaging
study (N = 35,159), whichever occurred first. Participants
in the exercise test had a 15-second single lead (lead I)
ECG recording prior to exercise, which was used in this
analysis. Participants in the imaging study had a 12-lead
15-second resting ECG recorded, but only lead I was used
in this work. Individuals were excluded if they had a prior
diagnosis of cardiovascular disease or if the ECG peak-to-
peak amplitude after pre-processing was lower than 0.25



mV or higher than 5 mV.

The primary endpoint was LTVA, defined as LTVA mor-
tality or admission to hospital with an LTVA diagnosis.
Follow-up was from the study inclusion date until March
25th, 2023 (median follow-up of 10.05 years).

Pre-processing included band-pass filtering with cut-off
frequencies 0.5Hz to 40Hz. The 86,603 individuals were
split into training (90%) and test (10%) sets. The train-
ing set was first up-sampled to the majority class (to com-
pensate for the case and control imbalance). Then, it was
divided into 10 equal parts for cross-validation (in each it-
eration, 90% of the training set was fed into the multilayer
CNN, and the model was evaluated on the remaining 10%
validation set).

2.2.  Architecture of the multilayer CNN

We used the PyTorch library in Python [7] to train a
multilayer CNN and leverage the distinct morphological
patterns of the ECG with an attention layer.

The multilayer CNN consisted of three 1-dimensional
CNNs, each followed by a rectified linear unit, with 128,
128 and 256 channels, kernel sizes of 3, groups of 1, 2
and 1, respectively, and a stride of 2 (Figure 1). Following
these 3 layers, we included two parallel blocks, one in-
cluding a 1-dimensional CNN with a rectified linear unit,
and one including an attention mechanism, consisting of a
convolutional block and a softmax. The sum of the outputs
from the CNN and the attention blocks was then concate-
nated with the information from age and sex, and fed into
a fully connected layer, followed by a softmax.

The 15-second ECG strip at rest (lead I) was split into
3 second windows, with a 50% overlap, which were the
input to the CNN. Standardised age and sex (1 being male
and -1 being female) were inputted into the model before
the fully connected layer (Figure 1). The output of the mul-
tilayer CNN model is a value between 0 and 1 predicting
the occurrence (or not) of LTVA within the follow-up pe-
riod (the multilayer CNN’s LT VA prediction, which can be
interpreted as a probability ranging from O to 1).

2.3. Computation of other ECG Indices

We first calculated an average heartbeat using signal av-
eraging. Then, we calculated previously proposed ECG
indices. In particular, we derived the RR interval, the QRS
duration, the QT interval, the T-peak-to-T-end (Tpe) inter-
val, T-wave amplitude (TAmp) and the T-wave morphol-
ogy variations (TMV) index [8]. The QRS duration and
QT interval were measured as the interval between the
QRS-onset and QRS-offset, and between the QRS-onset
and the T-wave end, respectively, from the averaged heart-
beat at rest. Then, we corrected the QT interval using
Bazett formula [9]. The Tpe interval was calculated as
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Figure 1.  Architecture of the multilayer convolutional
neural network.

the time interval from the peak to the end of the T-wave
and TAmp measured the amplitude of the T-wave peak.
Finally, we calculated TMV by comparing the average T-
wave from each participant with their corresponding sex-
and RR- normal T-wave morphology reference in lead I
from a normal reference cohort, as previously described

[8].
2.4. Statistical Analyses

We applied the logit transformation to the multilayer
CNN’s prediction to expand the range from 0-1 to -infinite
to +infinite. Then, it was standardised, as the other ECG
indices.

The area under the curve (AUC) was used to estimate
the performance of the CNN model and of the previously
proposed ECG indices. We trained the model three times
to obtain mean and standard deviation AUC values. As we
aim at developing a tool to be used as an initial step in iden-
tifying individuals that might benefit from early screening,
we aimed for a high sensitivity. Therefore, for each of
these parameters, we provide values of specificity for set
sensitivity values of 0.6 to 0.95.

We derived Kaplan-Meier curves by setting a threshold
at the cut-off value that maximised the sum of sensitivity
and specificity in the training set, as in previous studies
[8,10], with a comparison of cumulative events performed
by using log-rank tests, and plotted using the “survminer”
package in R. Univariable Cox regression analyses were
performed to determine the predictive value of the multi-
layer CNN model. Individuals who died from causes not



included in the primary end point, or individuals who did
not reach the follow-up time, were censored at the time of
death.

We repeated the analyses by stratifying the individuals
in the test set by sex (men and women) and age (younger
and older than 65 years old). Statistical analyses were per-
formed using R version 4.0.2.

3. Results

In the test set, 8,729 (50.4%) individuals did not reach
the full follow-up time and were censored from the study.
From the remaining 8,591 subjects, 78 (0.9%) had an
LTVA event.

After repeating the training of the multilayer CNN
model three times (with different random partitions in the
cross-validation step), we observed a range of variation
across the three AUC values of 0.078 (minimum AUC of
0.590, maximum AUC of 0.668).

The median (interquartile range) AUC values obtained
after bootstrapping in the training and in the test set for
the multilayer CNN model and for the previously proposed
ECG indices are shown in Figure 2. We observed that the
multilayer CNN model outperformed all ECG indices, be-
ing the QRS duration the only index with an AUC higher
than 0.5 in both training and test sets.

Training

0.71
061 I

0.44

AUC

o

o
—e—

RR QRS QTc  Tpe TAmp TMV  CNN

Test

0.7 4

AUC
o o
w [}
—e

0.44

RR QRS QTe Tpe TAmp TMV CNN

Figure 2. Median (interquartile range) area under the
curve values of the multilayer convolutional neural net-
work model and previously-proposed ECG indices.

We compared the specificity at increasing sensitivity
levels for LVTA risk detection of the multilayer CNN

model and of the QRS duration (being the only significant
index, as shown in Figure 2) in the test set. As shown in
Table 1, on average, the multilayer CNN showed higher
specificity values than the QRS duration for the same sen-
sitivity.

Sensitivity QRS duration =~ CNN
0.600 0.434 0.493
0.650 0.413 0.389
0.700 0.366 0.389
0.750 0.310 0.287
0.800 0.262 0.195
0.850 0.236 0.156
0.900 0.146 0.078
0.950 0.014 0.033

Table 1. Specificity values of the QRS duration and the
multilayer convolutional neural network model at different
sensitivity values.

Individuals in the high-risk group defined by the opti-
mal cut-off threshold of the multilayer CNN had a hazard
ratio of 1.40 (P = 0.021) (Figure 3). The continuous val-
ues of CNN also remained significantly associated with
LTVA risk (HR of 1.43 per standard deviation of CNN
- 1 standard deviation was 0.231, P = 0.004). Regard-
ing sex-stratified analyses, we only found significant HRs
in women older than 65 years old (N = 1,636, 19 LTVA
events). The multilayer CNN model showed a HR of 2.55
for women with a score > optimal threshold with respect
to women with score < optimal threshold (P = 0.04).
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Figure 3. Survival curves for the two risk groups defined
by the multilayer CNN model.



4. Discussion and Conclusions

In this study, we have trained a multilayer CNN using
15-second 1-lead ECGs, age and sex, and tested its long-
term LTVA predictive value in an independent cohort of
individuals without known cardiovascular disease from the
UK Biobank. We demonstrate the ability of the multilayer
CNN to predict LTVA risk outperforming previous ECG
indices, like TMV, the QRS duration or the QT interval.

Prediction of long-term LTVA is a task particularly chal-
lenging due to the low number of events in this population
[3]. Still, our multilayer CNN model was able to consis-
tently provide robust LTVA predictive value, outperform-
ing previously proposed strong LTVA predictors from the
ECQG, like TMV [8]. This confirms that a multilayer CNN
using 15-second 1-lead ECGs, age and sex, is able to iden-
tify ECG features that could be markers of subclinical dis-
ease and that are associated with risk for ventricular ar-
rhythmia. The investigation of the output from the atten-
tion layer will inform on the areas of the ECG that are con-
tributing to LTVA risk according to the CNN model.

Sex is known to be the strongest risk factor in low-risk
populations [3]. In our data, men had 2.7 fold risk than
women. Yet, the multilayer CNN model proved to be par-
ticularly useful in predicting LTVA risk in older females.
These findings have important implications for population
screening in individuals at apparently low risk.

However, the number of LTVA cases in the study pop-
ulation was low, which may have limited the optimal per-
formance of the multilayer CNN. In particular, there was a
large variability in follow-up times across individuals, with
only half the study population reaching 12 years follow-
up. Future studies should evaluate the performance of
CNN models in predicting LT VA risk at different follow-
up times, as done previously [11,12], to optimise resources
and provide a better clinical tool. Moreover, our analysis
was limited to a single study with a predominance of indi-
viduals with European ancestry, so the generalizability to
other populations and ancestries must be established.

In conclusion, a multilayer CNN model predicts long-
term LTVA in a low-risk population, outperforming pre-
vious ECG indices. The model showed to be particularly
useful in predicting events in older women. Our algorithm
may then be used as a first selection step in LTVA screen-
ing to prioritise individuals for more advanced monitoring
or treatment strategies. Future studies should investigate
the predictive value of CNN models at different follow-up
times, or when informed by additional co-morbidities.
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