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Abstract

Autonomic nervous system (ANS) activity reflects in vi-
tal signs that can be measured by means of camera-based
photoplethysmography (cbPPG). This work investigates
the automatic detection of acute mental stress with cbPPG.
Data from the Dresden Multimodal Biosignal Dataset
for the Mannheim Multicomponent Stress Test (DMBD-
MMST) covering > 40 h uncompressed facial RGB videos
of 56 healthy participants were used for rest vs. stress
classification on the basis of nine cbPPG vital signs with
decision tree ensembles. Also, the impact of normaliza-
tion, measurement duration, and color channel combina-
tion was investigated. Best performance for rest (baseline
and recovery) vs. stress classification (F1 = 0.81, Co-
hen’s Kappa κ = 0.61) was achieved with normalization,
30 s measurement duration, and vital signs from the green
channel and the color channel combination called O3C.
Without recovery (baseline vs. stress), this configuration
achieved F1 = 0.97 and κ = 0.94. Paired t-tests revealed
significant changes from rest (baseline and recovery) to
stress in eight of the nine vital signs and the maximum ef-
fect size amounted to d = 0.73, indicating sympathetic
excitation. Findings from this work are central to the non-
contact evaluation of ANS activity. Our results demon-
strate that automatic detection of acute mental stress with
cbPPG is feasible.

1. Introduction

Camera-based photoplethysmography (cbPPG) is an op-
tical technique for non-contact assessment of skin perfu-
sion [1]. Pulsatile fluctuations in dermal blood volume lead
to modulation of the interaction of light with tissue [1],
which allows the measurement of vital signs related to the
cardiovascular system [2, 3] and respiration [4].

Such vital signs provide information about the state of
the autonomic nervous system. For example, sympathetic
excitation as stimulated by physical pain from cold stress
alters perfusion, which is detectable with cbPPG [5].

Cameras often provide red, green, and blue color chan-

nels (RGB), and photoplethysmographic signals can be de-
rived from different color channel combinations [1]. It has
been shown for pulse rate [2], perfusion parameters [3],
and breath rate [4] that cbPPG measurement accuracy
varies greatly with the color channel combination.

The objective of this contribution is to determine to what
extent acute mental stress can be automatically detected by
cbPPG vital signs. Moreover, the influence of color chan-
nel combinations, measurement durations and individual
normalization is investigated.

2. Methods and Materials

To investigate the effects of acute mental stress with
cbPPG, we utilized the Dresden Multimodal Biosignal
Dataset for the Mannheim Multicomponent Stress Test
(DMBD-MMST) [6]. Acute mental stress was induced by
an arithmetic task complemented by several other stres-
sors such as noise and negative performance feedback [6].
Figure 1 illustrates the study procedure and timeline. The
DMBD-MMST contains not only physiological measure-
ments but also synchronized facial video data during the
conditions rest (c = 0) and stress (c = 1). Synchronized
video data was available for 56 participants (see Table 1).

The camera (UI-3060CP-C-HQ Rev.2, IDS GmbH,
Obersulm, Germany) recorded 100 uncompressed frames
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Figure 1: Timeline and condition c of the DMBD-MMST.

Table 1: Demographic data of the 56 participants (24 fe-
male, 32 male, all healthy). BMI: Body mass index.

Unit Mean ± SD Range
Age yr 25.9± 4.8 18 – 39
Weight kg 69.0± 12.6 50 – 108
Height cm 175.4± 9.3 158 – 194
BMI kg/m2 22.3± 2.7 17.4 – 31.6



per second with a spatial resolution of 320 px×640 px and
an amplitude resolution of 3× 12 bit (RGB).

The region-of-interest (ROI) was extracted with the
Level-Set technique described in [7]. Frame-wise averag-
ing of the pixel intensities within the ROI yielded a signal
for each of the color channels red R, green G, and blue B.

Photoplethysmographic signals were derived with color
channels combinations G (green channel G), O3C [2],
CHROM [8], and POS [9] for separate evaluation. It
should be noted that G and O3C are static while CHROM
and POS, both deduced from the dichromatic reflection
model of skin, are dynamic color channel combinations
that normalize their signal and tune it with amplification
factors redetermined every 1.6 s [2, 8, 9]. Optimization of
the data-driven approach O3C for the DMBD-MMST was
performed by means of a hemispherical surface grid search
on the accuracy of pulse rate measurement in comparison
to the earlobe photoplethysmogram as described in [2].

Signals were split into segments of 10 s length with 3 s
step size resulting in 47 637 segments for each color chan-
nel combination (41 597 rest, 6040 stress). To investigate
the effect of measurement duration, signals were also split
into segments of 30 s length with 9 s step size resulting in
15 295 segments (13 380 rest, 1915 stress).

For each segment of each color channel combination,
nine vital signs were extracted following the references
provided: pulse rate (PR) [2], logarithmized pulse strength
(PS) [10], breath rate (BR) by means of the frequency
modulation approach [4], pulse arrival time (PAT) [11],
average low-frequent intensity (DC) [6], and perfusion
index (PI) [12], as well as the product of PR and PI
(PRxPI), the product of DC and PS (C1), and the ratio
of PR to C1 (C2). Furthermore, we set up a mixed vi-
tal sign set (MIX) in which DC was derived from the
green channel due to its direct physiological link to pho-
ton absorption [3] and all other vital signs were derived
with O3C for increased signal robustness [2] without us-
ing dynamic signals (CHROM or POS) that normalize sig-
nals and frequently alter signal amplification, which po-
tentially corrupts DC and PS. To investigate the effect of
inter-individual differences, vital signs were normalized to
the individual baseline average.

We trained binary decision tree ensembles (method: Log-
itBoost, predictor binning: 256 steps, learn rate: 0.1) to
predict the condition c (0: rest, 1: stress) from the cbPPG
vital signs (rest vs. stress classification). Hyperparame-
ter optimization included the number of splits (5 to 100)
and the number of learners (1 to 1000). Data were split
in participant-exclusive and stratified manner for 3-fold
cross-validation. To gain a balanced dataset, the major-
ity class was randomly subsampled. Classification perfor-
mance was evaluated with F1 score and Cohen’s Kappa

(test set average of cross-validation). F1 score:

F1 = 2 ∗ (PRE ∗ SEN)/(PRE + SEN) (1)

combines precision PRE and sensitivity SEN in a single
metric while Cohen’s Kappa:

κ = (ACC − p0)/(1− p0) (2)

is a metric that corrects the prediction accuracy ACC by
the chance of random guessing p0 = 0.5 (balanced binary
classification). It has been proposed to rate values of κ < 0
as poor, 0–0.2 as slight, 0.21–0.4 as fair, 0.41–0.6 as mod-
erate, 0.61–0.8 as substantial, and 0.81–1 as almost per-
fect agreement (between classifier and ground truth) [13].
Paired t-tests and effect sizes Cohen’s d were calculated
from the individual means for each participant in each con-
dition for statistical analyses of the best performing config-
uration (without normalization).

To summarize, binary decision tree ensemble classifiers
were trained and tested for 20 configurations that resulted
from the combination of four color channel combinations
(G, O3C, CHROM, POS) as well as the mixed vital sign set
(MIX), two segment lengths (10 s, 30 s), and two settings
for vital sign normalization (with, without).

3. Results

The hemispherical surface grid search for O3C led to:

O3CDMBD = 0.46 ·R− 0.83 ·G+ 0.33 ·B (3)

with O3CDMBD as the optimal static linear RGB color
channel combination for the DMBD-MMST. In compari-
son to reference pulse rates from the earlobe photoplethys-
mogram as defined in [2], O3C yielded an accuracy of
97.8% (G: 88.3%, CHROM: 97.0%, and POS 97.9%).

Table 2 contains the results for the evaluation metrics
F1 (Table 2a) and κ (Table 2b) of all configurations. Best
rest vs. stress classification performance of F1 = 0.81 and
κ = 0.61 was achieved by MIX with normalization and
30 s segment length. This result corresponds to substan-
tial agreement with the ground truth. Performance differ-
ences mainly manifested in κ (maximum difference of F1
across all channels within a configuration: 0.04). On av-
erage, normalization and longer segments led to relative
improvements of 11.2% and 3.4% for F1 and 193.7%
and 17.0% for κ, respectively.

Table 3 provides an overview over the cbPPG vital signs
during rest and stress. Paired t-tests yielded significant
results for all cbPPG vital signs except PI. Absolute ef-
fect sizes ranged from 0.18 (PI) to 0.73 (C2), with rela-
tive changes of mean of +4% and +42%, respectively.
Vital signs indicated positive chronicity (PR), peripheral
vasoconstriction (PS and DC), and increased blood pres-
sure (PAT), all consistent with sympathetic excitation. In-
creased breath rate indicated the processing of acute men-



Table 2: Evaluation metrics F1 score and Cohen’s Kappa for the rest vs. stress classification of all 20 configurations.

(a) F1 score.

F1
Length 10 s 30 s
Normalization no yes no yes

C
ha

nn
el

G 0.68 0.76 0.69 0.79
O3C 0.68 0.73 0.69 0.78
CHROM 0.67 0.72 0.67 0.77
POS 0.69 0.72 0.68 0.77
MIX 0.69 0.76 0.70 0.81

(b) Cohen’s Kappa.

κ
Length 10 s 30 s
Normalization no yes no yes

C
ha

nn
el

G 0.22 0.49 0.21 0.54
O3C 0.15 0.41 0.26 0.48
CHROM 0.10 0.33 0.06 0.51
POS 0.18 0.36 0.19 0.50
MIX 0.33 0.48 0.29 0.61

Table 3: Mean, standard deviation (SD), and relative change of mean (∆M) of the vital signs from the MIX configuration
(30 s segment length, without normalization). The conditions rest and stress were compared with paired t-tests of the
individual means in each condition (N = 56). Cohen’s d was calculated with pooled standard deviation.

Vital Rest (n = 13 380) Stress (n = 1915)
sign Unit Mean SD Mean SD ∆M p d
PR bpm 68.9 12.8 77.2 17.7 +12% 3.17e−07 *** 0.62
PS a. u. 1.63 0.36 1.52 0.40 −6% 8.52e−04 ** −0.29
DC a. u. 2006 425 1824 497 −9% 5.02e−05 *** −0.42
BR rpm 15.5 4.1 17.1 5.4 +10% 7.61e−12 *** 0.36
PAT ms 223 51 205 50 −8% 1.87e−04 ** −0.35
PI a. u. 8.33e−04 1.88e−04 8.67e−04 2.46e−04 +4% 3.20e−02 0.18
PRxPI a. u. 5.64e−02 1.21e−02 6.46e−02 1.36e−02 +15% 3.29e−09 *** 0.67
C1 a. u. 3328 1172 2893 1328 −13% 1.29e−04 ** −0.36
C2 a. u. 2.44e−02 1.27e−02 3.46e−02 2.15e−02 +42% 6.86e−07 *** 0.73

p-values reported uncorrected, significance markers with Bonferroni correction: *: p < 0.05/9, **: p < 0.01/9,
***: p < 0.001/9. PAT logarithmized before paired t-test. N : Number of participants. n: Number of segments.

tal stress by the amygdala and the anterior cingulate cortex
in line with the literature [6].

4. Discussion

Results for κ and F1 correlate strongly (r = 0.96,
p < 0.001), which indicates statistical robustness of the
methodological approach even if performance differences
manifest to varying degrees in the two metrics.

Classification performance benefits from normalization
as it reduces inter-subject variability and facilitates the
focus on intra-subject changes. The choice of segment
length remains a compromise: Measurements on longer
segments benefit from averaging effects and become less
prone to transient artefacts, but lead to reduced tempo-
ral resolution that may be insufficient to reflect physio-
logical changes [1]. While segments of 10 s length suf-
fice to measure the pulse rate with cbPPG [1], breath rate
measurement becomes more accurate for segments of 30 s
length [4]. It is reasonable that more accurate measure-
ment results lead to higher classification performance.

Signal normalization of CHROM and POS diminishes
the informational content of the vital sign DC [3], and
therefore also affects PI. O3C does not require normaliza-
tion and the low-frequent components of O3C have been
shown to contain vital information [3, 4]. In general, if
O3C is optimized for metrics targeting the cardiac pul-
satile signal component, it converges towards color chan-

nel combinations that resemble static versions of CHROM
and POS [2,14], which empirically indicates the validity of
the application of the dichromatic reflection model. How-
ever, if the same kind of optimization is performed with
metrics targeting low-frequent signal components (e.g. the
baseline modulation caused by respiration), the optimiza-
tion converges towards the green channel [4]. These ob-
servations are consistent with the increased classification
performance of MIX that combines low-frequent informa-
tion from the green channel with other vital signs more
robustly extracted by O3C. Accordingly, the use of more
than one color channel combination depending on the vital
sign to be measured stands to reason.

Because the rest condition distributes over 40min, a cer-
tain physiological variation of the vital signs is to be ex-
pected. To investigate the effect on classification perfor-
mance, we used the best performing configuration to train
and test decision tree ensembles following the same pro-
cedure as before but with data from a single rest phase
instead of all rest phases. Table 4 contains the results
of this approach for all five rest phases. It can be seen
that the discrimination of stress phase and baseline with
F1 = 0.97 and κ = 0.94 achieved almost perfect agree-
ment with the ground truth while classification perfor-
mance decreased for rest phases after the stress phase (on
average F1 = 0.77 and κ = 0.52). There are multiple pos-
sible explanations for this: The first phases were closer in
time to the set point for normalization. Set points of phys-



iological regulation processes may alter over time (allosta-
sis), and the sympathovagal balance was disturbed prior to
the rest phases 3 to 6. This also means that recovery pro-
cesses may be on-going, e.g. to readjust blood pressure. It
could also be hypothesized that participants were most re-
laxed during the first phase (baseline) because this was the
only phase without preceding saliva sampling1 [6].

Table 4: Evaluation metrics F1 score F1 and Cohen’s
Kappa κ of the rest vs. stress classification by phase (MIX,
30 s segment length, with normalization).

Baseline Recovery
Rest phase 1 3 4 5 6
F1 0.97 0.78 0.78 0.78 0.75
κ 0.94 0.57 0.50 0.57 0.42

PAT, used as a substitute for pulse transit time (PTT), has
been proven sensitive to acute mental stress but includes
the cardiac pre-ejection period and requires an electrocar-
diogram [11]. Without PAT, κ decreased by 8% from 0.61
to 0.56 (MIX, 30 s segment length, with normalization).
The non-contact approach of cbPPG would benefit from a
transition from PAT to purely video-based PTT from facial
recordings. However, such measurement of PTT requires
extremely high frame rates, which, at present, is imprac-
ticable for uncompressed videos of reasonably high reso-
lution. It can be assumed that technological advancements
will make the parameter more accessible in the near future.

Finally, it should be noted that the rest vs. stress classifi-
cation is a general approach, i.e. it omits the participant-
specific stress-strain relationship. However, successful
stress induction for the DMBD-MMST has already been
shown beforehand [6, 15].

5. Conclusion

We present a study on the automatic detection of acute
mental stress by means of cbPPG. Our results show sub-
stantial to almost perfect ground truth agreement. Our
findings are relevant to evaluate the suitability of cbPPG to
assess the activity of the autonomic nervous system with-
out contact. Future research should investigate options to
increase classification performance during recovery, e.g.
by extending segments to include pulse rate variability.
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1Chewing and spitting out an absorbent roll in front of the study super-
visor can be considered an unusual interaction with an authority figure
(social-evaluative stress). This may leave participants mentally strained
at the start of the next phase even in rest condition.
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