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Abstract

Many patients remain in a comatose state after initially
surviving a resuscitation following a cardiac arrest. The
prognosis in this state carries the decision of life support
withdrawal, thus needing an objective and deterministic
guideline. The objective of this study, is to assist this
decision by providing a model able to predict the cere-
bral performance category (CPC) of comatose patients fol-
lowing cardiac arrest from their electroencephalographic
(EEG) signal. To achieve this, binary classifiers built with
3D Convolutional Neural Networks (CNNs) followed by
Dense Neural Networks (DNN) are used in combination
with a “divide and conquer” strategy, thus enabling the
automatic extraction of features from the tensors of EEG
signals, taking into consideration the spatial relation of
the signals according to the electrodes’ distribution on
the scalp. This work was submitted under the team name
“BioITACA UPV” to “Predicting Neurological Recovery
from Coma After Cardiac Arrest: The George B. Moody
PhysioNet Challenge 2023”, and while the team did not
score in the official phase, results obtained from a held-out
subset of the training set demonstrate the capability of the
model to classify by CPC from short segments of 5 seconds
to long recordings of EEG data. Results show an average
accuracy of 0.76 between the CPC classifiers and capabil-
ity to discern between a good or bad outcome prognosis.

1. Introduction

After surviving a cardiac arrest resuscitation, some pa-
tients may remain in a comatose state due to the brain dam-
age produced by the generalized hypoxia. Protocols dictate
that these patients should be kept under life support assis-
tance until death or the physician’s prognosis on the like-
lyhood of the patient to recover consciousness [1]. This
prognosis results in keeping the life support system or its
withdrawal. As can be seen, a false positive and its conse-

quent life support withdrawal provokes the death of a pa-
tient who would have recovered consciousness in the fol-
lowing days. Some scales were implemented to avoid the
subjectivity of the prognosis, such as the Glasgow Coma
Scale or the Cerebral Performance Category (CPC) scale,
composed by: CPC 1: Good neurological function and in-
dependency. CPC 2: Moderate neurological disability and
dependency. CPC 3: Severe neurological disability. CPC
4: Unresponsive wakefulness syndrome. CPC 5: Dead.

Despite this, even after the use of some statistical or
machine learning models, literature shows the prevalence
of wrong prognosis [2]. Typically these machine learn-
ing models automatically analyze the signals, extracting
features channel by channel with 1D CNN or by group of
channels with 2D CNN [3, 4]. The problem with this ap-
proach is the channels’ lack or reduced spatial resolution,
respective to the distribution of the electrodes across the
scalp, is lost.

Therefore, this study aims to evaluate a machine learn-
ing model that can extract features from the channels,
keeping the relative distribution of the electrodes in space.
To achieve this, a 3D CNN is employed to process contin-
uous EEG data fragments. This model is evaluated on a
database of 609 patients from EEUU and Europe.

2. Materials and Methods

2.1. Dataset

The data used in this study is extracted from the In-
ternational Cardiac Arrest REsearch consortium (I-CARE)
database [5], available at PhysioNet [6]. This dataset com-
prises populational data (sex, age...) and different signals
such as electroencephalography and electrocardiography
recordings from patients who were in a comatose state fol-
lowing a cardiac arrest.



These EEG signals were continuously recorded, which
means approximately 58,000 hours of collected EEG data.
For each patient, the length of the recordings may vary
from hours to days, depending on their clinical evolution.
The patients’ neurological outcomes, which were assessed
3-6 months after the hospital discharge, are labeled within
the CPC scale, ranging from 1 to 5, and as good outcome
(CPC 1 and 2) or bad outcome (CPC 3, 4, and 5). From a
total of 609 patients given, the class distribution is as fol-
lows:

Table 1. CPC distribution across the given database

CPC Nº Patients Percentage (%)
CPC 1 181 29.72
CPC 2 44 7.22
CPC 3 22 3.61
CPC 4 9 1.48
CPC 5 353 57.97

2.2. Data Preprocessing

Due to the dynamic nature of the EEG data recorded
following the cardiac arrest and the volume of data load,
only the last registers of each patient were retrieved. Fur-
thermore, in order to decrease the differences between the
amount of available data from each CPC, only the last two
registers were selected for CPCs 1, 2, 3 and 5, and the last 4
for CPC 4. Considering the hypothesis that as time passes
after the cardiac arrest, the EEG signals become more char-
acteristic for each CPC, increasing the amount of record-
ings used from past states of the patients may confuse the
model, but due to the low availability of the CPC 4 data,
this measure was taken in order to avoid techniques of data
augmentation, that could lead to overfitting.

Once the registers were ready, the signal was filtered
at 50 Hz with both a Notch and a low pass filters since
part of the data was acquired in Europe. Then, in order to
reduce and standardize the frequency of samples per sec-
ond, which originally variated from 200 to 2048 Hz, the
signals were resampled to 100 Hz in order to respect the
Nyquist theorem. After the resampling, a segment of the
first 30,000 samples (per channel) is taken in order to es-
tablish a common length for all registers. Then, the signals
were reduced to the minimum amount of channels shown
in the database, a total of 19 channels configured under the
international 10-20 system and ordered into a tensor de-
signed to keep the same relative spatial distribution of the
electrodes across the scalp that was used during the record-
ing. The template used to reorder the channels and the fol-
lowed international 10-20 system are shown in Figure 6.

Figure 1. International 10-20 system electrodes distri-
bution. Only the channels employed are shown in the
graphic.

Figure 2. Template of channels following the international
10-20 system. The void symbols indicate an array of zeros
employed to keep the orthoedral shape of the tensor.

To conclude with the preprocessing, a ”divide et vinces”
strategy is followed in order to facilitate parallelization, di-
minish the trained space of the models, and increase the
number of data on hand. The 30.0000 samples (per chan-
nel) segments are then divided into multiple fragments of
500 samples (5 seconds of the record) as can be seen in
Figure 3.

Figure 3. Partition architecture of the data.

2.3. Model Design

The model used is based on a group of submodels with
the same architecture. In order to design it, different archi-
tectures were tested dynamically, choosing always power
of two parameters [7]. The best architecture found is em-
ployed by every submodel and follows a sequential archi-



tecture composed by two initial 3D CNN layers. Its output
is flattened and introduced into a set of three dense neu-
ral layers whose exit ends in the final layer, to give the
binary prediction of class belonging with a softmax activa-
tion function. Despite this last layer and the flatten, each
other layer uses a ReLu activation function, and works in
a decreasing order of complexity as shown in Figure 4.

Figure 4. Architecture of the submodels designed in the
study.

Once the segments are classified by each submodel, the
final CPC category is given in function of how all the seg-
ments from the signal’s fragment have been labeled. This
is done by majority voting with the segments labels, and
in case of a draw between classes, the better outcome class
is prioritized, resulting (CPC1 ≺ CPC2 ≺ CPC3 ≺ CPC4
≺ CPC5). The same preference applies in the higher score
voting used to determinate the label of each segment form
the signal.

2.4. Evaluation

The submodels are designed to classify five-seconds
fragments from a total of five minutes of continuous EEG
signal recordings within the CPC scale. Therefore, in or-
der to evaluate their effectiveness the accuracy, F1-Score
and the AUC-ROC values are calculated for both the frag-
ments and segments (patients) classification.

The data was partitioned helding-out patients from the
training set into the groups of train, test and validation pa-
tients. Given the dependence of the volume of data accord-
ing to CPC 4, (∼1:40 with respect to CPC5), and with the
aim of increasing statistical significance, the models have
been evaluated with a k-fold of 10, selecting different pa-
tients for each group in every fold.

3. Results

The evaluation of the submodels shows similar perfor-
mances across CPCs, employing the same architecture pa-
rameters as seen in Figure 5 and Tables 2 and 3.

Figure 5. Averaged 10-fold AUC-ROC results for each
CPC submodel.

Table 2. Metrics evaluated for each submodel.

Accuracy F1-Score AUC
CPC 1 0.79 0.75 0.85
CPC 2 0.79 0.86 0.92
CPC 3 0.75 0.80 0.89
CPC 4 0.72 0.85 0.89
CPC 5 0.75 0.80 0.86

Additional information about the outcome classification
can be found in Figure 6.

Despite these good results, the code submitted for eval-
uation during the official phase did not score. Therefore,
we have neither score nor rank.



Table 3. Averaged confusion matrix results for each CPC
submodel with a support of 1200 segments for each class.
True Positives (TP), False Positives (FP), True Negatives
(TN) and False Negatives (FN).

CPC TP (%) FP (%) TN (%) FN (%)
CPC 1 0.99 0.01 0.64 0.36
CPC 2 0.99 0.01 0.91 0.09
CPC 3 0.99 0.01 0.73 0.27
CPC 4 0.99 0.01 0.83 0.17
CPC 5 0.99 0.01 0.60 0.40

Figure 6. Averaged 10-fold AUC-ROC results for each
outcome group.

4. Conclusion

Despite the fact that a lower true positive rate is ob-
served in CPC 1 and 5 submodels, as can be observed in
Figure 6 and Table 3, taking a look at Figure 6, most of
the submodels missclassifications stay in their respective
outcome. Which means in one hand, that the majority of
CPC1 misslabels of its class segments are labeled into CPC
2, and in the other hand, that the CPC 5 submodel is more
conservative with its inclusion criteria, which, given the
sentencing that this entails, benefits the patient in this ex-
treme case.

The obtained results indicate that 3D CNN + DNN
based models show capability in the field of comatose pa-
tients EEG classification into the CPC scale. In this study

in particular is shown how combining the classical “divide
and conquer” strategy with binary classifiers a good result
can be obtained, even in complex multi-class classification
problems.
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