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Abstract 

Aims: Seismocardiography (SCG) signals provide 

valuable information about the heart's performance. The 

technique subsists in a noisy environment where deep 

learning is often needed to extract important information, 

requiring large amounts of training data which can be 

expensive to obtain. In this work, we aim to create synthetic 

SCG heartbeats that are realistic and diverse to affordably 

augment current SCG datasets. Methods: We trained a 

Generative Adversarial Network (GAN) on real SCG 

heartbeats to produce synthetic SCG data. The 

architecture consisted of a deep convolutional GAN that 

was conditioned on an embedded identifier label for each 

subject to enable the generation of subject-specific 

heartbeats. Results: Our results demonstrated that the 

GAN could generate SCG heartbeats that closely 

resembled real SCG morphology. Generated heartbeats 

had an average root-mean-squared-error of 0.1831 when 

compared to the ensemble average of their real 

counterparts. Conclusion: The study presented a novel 

approach of using GANs to generate artificial SCG 

heartbeats. The use of GAN-generated SCG heartbeats has 

the potential to overcome the limitations of real SCG data 

availability, allowing for enhanced research and clinical 

applications of this valuable cardiac diagnostic technique.  

 

 

1. Introduction 

Seismocardiography (SCG) is a growing cardiovascular 

monitoring technique. The wearable method measures the 

vibrations of the chest wall generated by the heart’s 

mechanical activity. SCG's portability and non-invasive 

nature make it an appealing tool for remote patient 

monitoring, enabling continuous assessment of heart 

function in environments outside of the clinic [1]. By 

capturing key vibrations corresponding to valvular 

movements, SCG has been shown to produce metrics such 

as heart rate [2], pre-ejection period [3], left-ventricular 

ejection time [4], and respiratory information [5]. More 

recently, as the technology evolves, subtleties in the SCG-

derived cardiac mechanics have been combined with 

machine learning techniques to indicate various conditions 

such as heart failure [6], valvular disorders [7], stroke 

volume [8], and blood pressure [9]. 

The accuracy of these models requires large amounts of 

SCG datasets to train machine learning models. As an 

upcoming technology, there are very few established 

online datasets [10]. Collecting relevant data can be 

challenging due to time, costs, and expertise constraints, 

limiting its use in research and clinical potential. 

Synthetic data generation offers a compelling solution 

to the challenges posed by SCG data collection. This 

synthetic data can closely approximate the complexities of 

actual cardiac mechanics, allowing researchers and 

practitioners to train and validate machine learning models 

without the prohibitive costs associated with large-scale 

data collection efforts. 

In this work, we propose a generative adversarial 

network (GAN) to synthetically generate SCG data. GANs 

can learn the underlying distribution of real SCG signals 

and generate synthetic SCG data that closely resembles the 

characteristics of actual cardiac vibrations. We then 

analyzed the model to assess the realism and diversity of 

synthetic heartbeats on an inter- and intra-subject level. 

 

2. Methods 

2.1. Data 

The study was conducted at McGill University and 

approved by the McGill Review Ethics Board (no: 6-

0619). The dataset consisted of 62 subjects (27 female) 

with (mean ± standard deviation) age: 24.6 ± 4.5 years, 

height: 172 ± 10.4 cm, and weight: 70.2 ± 16.3 kgs. All 

subjects were supine and motionless during the study. An 

inertial measurement unit (Invensense, MPU9250) was 

secured to the xiphoid process using a piece of double-

sided tape. The inertial measurement unit was controlled 

by a Raspberry Pi Zero W using I2C protocol and sampled 

at approximately 600 Hz. SCG data was then lowpass 

filtered at 90Hz and down sampled to 200 Hz. Reference 

electrocardiogram (ECG) was concurrently recorded using 



the BIOPAC system. The raspberry pi and BIOPAC were 

synchronized with an externally wired clock from the 

BIOPAC to the Raspberry Pi. ECG R-peaks were used to 

segment the SCG into cardiac cycles, with 0.1 seconds 

prior to the R-peak defined as the start of each cycle. Each 

heartbeat was mean padded to standardize the length to 256 

samples, corresponding to 1.28 seconds. Each heartbeat 

was normalized by its maximum absolute value. 

 

2.2. Model 

We employed a conditional GAN (cGAN) to generate 

synthetic SCG heartbeats. A traditional GAN is a network 

that simultaneously trains two models, a generator and a 

discriminator, against each other. The generator is tasked 

with generating fake heartbeats from a random latent space 

to fool the discriminator, whereas the discriminator is 

tasked with classifying if a heartbeat is real or fake. In a 

cGAN, the model is given some additional information 

such as class, subject, or features, and must produce a beat 

that is within that condition. 

Our cGAN model was built with a deep convolutional 

framework and conditioned on a unique identifier for each 

subject. The model architecture can be seen in Figure 1.  

For the generator, two inputs were supplied, the subject 

labels and the random latent space. The subject labels 

consisted of an integer between 0 and 61. They were then 

fed into an embedding layer with 50 XX, and a fully 

connected layer with 32 nodes. The latent space was a 

randomly generated vector with 100 samples. It was fed to 

a fully connected layer with 32 nodes, then a leaky ReLu 

activation was applied. Both inputs were then 

concatenated. The main structure consisted of four one-

dimensional transposed convolutional layers with 256, 

128, 64, and 1 filters, respectively. Each layer had a kernel 

size of 4, stride of 2, and same padding. The layers were 

followed by a leaky ReLu activation layer, except for the 

final layer which used a tanh activation. 

The discriminator model also had two inputs: the 

subject labels, and the heartbeats (either real or fake 

heartbeats). The subject labels were embedded with the 

same method as the generator. The input heartbeats were 

taken directly and concatenated with the subject 

identifiers. The main structure had three one-dimensional 

Figure 1. Architecture of the proposed GAN. The generator (left) receives inputs from subject labels and a random latent 

space and outputs a generated heartbeat pattern. On the other hand, the discriminator (right) takes inputs from subject labels 

and either real or generated heartbeats and subsequently performs a classification task to discern the authenticity of the 

heartbeat data. 

 



strided convolutional layers, with 64, 128, and 256 filters. 

Each had a kernel size of 4, stride of 2, same padding, and 

leaky ReLu activation. A dropout layer of 0.3 was added 

between each convolutional block. Finally, there was a 

flatten layer, and a fully connected layer with a single node. 

The model used an Adam optimizer with a learning rate of 

0.0002, and beta1 of 0.5. The model was trained on a 

binary cross-entropy loss function. 

 

2.3. Training and Evaluation 

The model was trained for 100 epochs with a batch size 

of 256, and the following steps were performed on each 

epoch. First, a half-batch of random real SCG samples 

were used to train the discriminator. Then a half batch of 

fake samples were generated using the generator and were 

used to train the discriminator. Finally, we trained the 

entire GAN with the discriminator layers frozen to train the 

generator using the error from the discriminator. 

The resulting heartbeats were evaluated by visual 

inspection to confirm the resemblance to real SCG 

heartbeats. They were judged on similarity to each other 

within the subject, and difference between subjects.  

We quantified the error using root-mean-squared-error 

(RMSE). First, we randomly selected 50 real and 50 

generated heartbeats from each subject. Then, using the 

real SCG data, we calculated an ensemble average. The 

RMSE was calculated from each fake heartbeat to the 

ensemble average of the real heartbeats. Since there is 

naturally a lot of variances in SCG beats, we also 

calculated the RMSE from the real heartbeats to their 

respective ensemble average to give a baseline of expected 

error. Finally, we compared the RMSE from the generated 

heartbeats to the ensemble averages of other subjects to 

confirm subject-specific similarity. 

 

3. Results 

The model was trained on to minimize error on the 

entire dataset. We randomly selected 50 real and 50 

generated heartbeats to evaluate the model. A random 

selection of heartbeats from 5 subjects can be seen in 

Figure 2. Each column corresponds to the same subject 

where four heartbeats were randomly generated for that 

subject. It can be observed that within each subject, there 

is visually more similarity than between subjects. 

Additionally, we can visually see variability in both inter- 

and intra-subject heartbeats. 

RMSE was calculated on the subset of heartbeats. We 

observed a (mean ± standard deviation) RMSE of 0.1757 

± 0.0584 when comparing real SCG heartbeats to their 

respective ensemble average. For the generated heartbeats, 

we observed a 0.1831 ± 0.0386 when comparing the fake 

SCG heartbeats to the respective real ensemble averages. 

We also observed a RMSE of 0.2357 ± 0.0503 when 

comparing generated heartbeats to the real ensemble 

averages from the other subjects. This shows that 

generated heartbeats have an error on the same scale as 

their real counterparts. Additionally, it shows that on 

average, each beat is more similar to their own ensemble 

average, than to the ensemble averaged from other 

subjects. 

  

Figure 2. Randomly generated heartbeats from five subjects across four random samples.  Each column shows heartbeats 

from the same subject. 

 



4. Discussion 

The results of the study showed that the generated beats 

closely resembled SCG-like patterns, with RMSE levels 

that were comparable to actual beats. Furthermore, the 

observed increase in error between different subjects 

suggest that the model had successfully captured subject 

specific SCG features, validating its ability to generate 

diverse SCG heartbeats. This validation highlights the 

potential of the model to enhance deep learning SCG 

research by contributing to dataset augmentation, template 

generation, and increasing dataset diversity. However, its 

important to note some limitations. The analysis for 

diversity within each subject is relatively limited, and it 

remains challenging to ascertain whether the generated 

beats truly represent useful cardiac information without 

further validation in diverse situations. Additionally, the 

study is constrained to healthy subjects, and the 

normalization process limits variability in the Aortic 

Opening (AO), which is the most extensively analyzed 

feature. Future work should address these limitations to 

examine morphological features and their variation to 

broaden the validation of the model. 

 

5. Conclusion 

This study investigated the use of a GAN to 

synthetically generate SCG heartbeats. The results 

demonstrate that generated heartbeats closely resembled 

their actual counterparts. This indicates that the synthetic 

SCG heartbeats produced by the GAN possess the 

potential to serve as a valuable resource for the training and 

validation of SCG analysis algorithms while reducing the 

dependence on authentic patient data exclusively. This 

contribution has the potential to surmount the cost-

associated obstacles that often hinder SCG research, 

thereby simplifying access to SCG data for the 

development of novel solutions. Consequently, this 

accelerated development holds promise for advancing the 

technology and its diverse applications. 
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