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Abstract

Simplex plots afford barycentric mapping and visualisa-
tion of the ratio of three variables, summed to a constant,
as positions in an equilateral triangle (2-simplex); for in-
stance, time distribution in three-interval musical rhythms.

We propose a novel use of simplex plots to visualise the
balance of autonomic variables and classification of auto-
nomic states during baseline and music performance.

RR interval series extracted from electrocardiographic
(ECG) traces were collected from a musical trio (pianist,
violinist, cellist) in a baseline (5 min) and music perfor-
mance (∼10 min) condition. Schubert’s Trio Op. 100, An-
dante con moto was performed in nine rehearsal sessions
over five days. Each RR interval series’ very low (VLF),
low (LF), and high (HF) frequency component power val-
ues, calculated in 30 sec windows (hop size 15 sec), were
normalised to 1 and visualised in triangle simplex plots.
Spectral clustering was used to cluster data points for
baseline and music conditions.

We correlated the accuracy between the clustered and
true values. Strong negative correlation was observed for
the violinist (r = –0.80, p ≤ .01, accuracy range: [0.64,
0.94]) and pianist (r = –0.62, p = .073, [0.64, 0.80]), sug-
gesting adaptation of their cardiac response (reduction be-
tween baseline and performance) over the performances; a
weakly negative, non-significant correlation was observed
for the cellist (r = –0.23, p = .545, [0.50, 0.61]), indi-
cating similarity between baseline and performance over
time. Using simplex plots, we were able to effectively rep-
resent VLF, LF and HF ratios and track changes in auto-
nomic response over a series of music rehearsals to ob-
serve autonomic states and changes over time.

1. Introduction

Heart rate variability (HRV) and related beat-to-beat
(RR) intervals are important in assessing cardiac health [1].
HRV is related to nervous system response [2] and indica-
tive of how well the heart is able to cope with stress [3, 4].
Power spectrum analysis of HRV (PS/HRV) is particularly
relevant to the balance between sympathetic and parasym-

pathetic nervous system response [5]. There are three ma-
jor frequency components: very low (VLF, 0.0033-0.04
Hz), low (LF, 0.04-0.15 Hz), and high (HF, 0.15-0.40
Hz) [5]. LF, for instance, is linked to vasomotor activ-
ity [5] and HF to respiratory-driven vagal efference to the
sinus node [6]. The ratios between these components hold
special interest for the cardiovascular community.

The frequency components in the power spectrum are
compositional and do not vary independently [6]. They
can be examined by plotting the power spectrum (in the
frequency domain), spectrogram (time-frequency plot) or,
by comparison, the sum of power within defined frequency
ranges. We, therefore, seek an appropriate, and effective
visualisation for analysing the three components simulta-
neously. One such visualisation method is triangle simplex
plots, also known as ternary plots or Gibbs triangles. They
are 2D plots that depict three variables summed to a con-
stant, typically 1. Simplex plots have been used in phys-
ical chemistry and mineralogy to show the compositions
of three-piece systems [7] and in game theory to examine
evolutionary dynamics [8]. Simplex plots have also been
used in musical applications to depict the distribution of
time in three-beat patterns [9, 10].

In this paper, we propose the use of simplex plots to
depict the PS/HRV distribution of VLF, LF, and HF com-
ponents. We visualise a real-world example of HRV data
gathered from a trio of musicians while performing a mu-
sic piece during rehearsals over a period of four months.
We demonstrate how this visualisation method is useful,
for instance as a basis for data clustering, which we use
to characterise data collected while playing and during the
period of rest before performance. We propose this method
as a way to visualise HRV data and future directions, such
as applying image classification techniques.

2. Methodology

2.1. Data Collection

RR interval series were collected during performances
of Schubert’s Trio Op. 100, Andante con moto (from here,
“the Schubert”), played by a trio of professional musi-



(a) Scatter plot matrix visualisation of pianist’s first rehearsal. (b) Simplex plot visualisation of pianist’s first rehearsal.

Figure 1: Scatterplot matrix vs. simplex data visualisation of normalised VLF, LF, and HF components in the pianist’s data
from the first rehearsal, examined (a) as pairings in a 2D scatterplot matrix; and, (b) in a triangle simplex plot.

cians (violinist, cellist, and pianist, each with 20+ years of
performance experience). The Schubert was selected for
its clear musical structures. Twenty-seven RR time series
were collected during nine performances of the Schubert in
five days between December 2022 and March 2023. Each
performance started with a baseline ECG recording during
five-minutes’ silence. On 3 of the 5 days, the piece was
performed 2-3 times; in these cases, a 5+ minute break was
taken between each recording, to allow the participants to
settle back to the baseline before performing again.

Each musician’s ECG signals were collected using a Po-
lar H10 (Polar Electro Oy, Kempele, FI) monitor worn
across the sternum with sampling frequency of 130 Hz.
QRS complexes were automatically detected and RR in-
terval series calculated within the Polar’s firmware. Arte-
facts and ectopic heartbeats were manually removed. Ad-
ditionally, music audio signals were collected with a Zoom
H5 (Zoom, Tokyo, JP) handheld recorder placed approxi-
mately 2 metres from the musicians.

2.2. Data Processing & Plotting

We calculated the power spectrum in the VLF, LF, and
HF components from RR intervals in 30-second windows
with a hop size of 15 seconds. Then, we calculated relative
values in the ith window regarding the sum of components

in each window as:

V LFnorm(i) = V LFi/(V LFi + LFi +HFi)

LFnorm(i) = LFi/(V LFi + LFi +HFi)

HFnorm(i) = HFi/(V LFi + LFi +HFi)

(1)

A single point on the simplex plot consists of three coordi-
nates: [V LFnorm(i), LFnorm(i), HFnorm(i)].

Triangle simplex plots were created in Python using
the ternary library. Figure 1 compares the pianist’s
PS/HRV components in the first performance visualised in
a X-Y scatterplot (a) versus in a triangle simplex plot (b).

Additionally, we plotted aggregated performances using
point coordinates averaged over all windows. Thus, every
rehearsal is represented by one point for baseline and one
for music performance in the triangular simplex space.

2.3. Spectral Clustering

One possible analysis using simplex plots is in cluster-
ing data points into defined groups. We performed such
a spectral clustering method [11] to determine the distinc-
tion between baseline and music period data points. We
estimated the clustering accuracy in each rehearsal as the
number of points correctly classified as baseline or music
data divided by the total number of data points. Then, we
used linear correlation analysis to check whether the clus-
tering accuracy monotonically increased or decreased with
the number of rehearsals for each musician.



(a) Violin PS/HRV components (b) Cello PS/HRV components (c) Piano PS/HRV components

Figure 2: Simplex visualisation of performers’ heart rate variability during baseline (green) and music (orange) from the
trio’s second rehearsal. Spectral clustering accuracy reported in top left of each triangle plot.

Figure 3: Accuracy of baseline-music categorisation via
spectral clustering for each musician together with fitted
line and correlation coefficients with the number of the per-
formance.

3. Results

Accuracy for each performance’s clustering can be
found in Figure 3. A strong negative correlation with the
number of the rehearsal was observed for the violinist (Fig-
ure 2a), r = –0.80, p ≤ .01, accuracy range: [0.64, 0.94],
and pianist (Figure 2c), r = –0.62, p = .073, [0.64, 0.80]
(non-significant correlation). On the other hand, a weakly
negative, non-significant correlation was observed for the
cellist (Figure 2b), r = –0.23, p = .545, [0.50, 0.61].

The simplex plot of aggregated performances, visualis-
ing the averaged values of the frequency components over
all windows, is shown in Figure 4.

Figure 4: Averaged values (centroids) of data points from
each rehearsal and for each performer’s heart rate variabil-
ity during baseline and music: pianist (orange circles), vi-
olinist (green triangles) and cellist (blue stars).

4. Discussion

Through visualising PS/HRV with the help of triangle
simplex plots, we observed the distribution of the fre-
quency components with respect to their reciprocal rela-
tionship. Simplex plots are a novel technique in compu-
tational cardiology research. We have demonstrated their
usage in visualising and studying three frequency depen-
dencies. In our examples, the simplex plots provided bene-
ficial representations for spectral clustering, which allowed
us to group the musicians’ HRV data during baseline (si-
lence) and during performance in rehearsal settings. The
negative significant correlation between baseline and per-



formance PS/HRV found for the violinist suggests that,
over time, the difference between baseline and perfor-
mance decreased. Figure 4 supports the clustering accu-
racy in Figure 3. While the centroids of the music peri-
ods are relatively similar over performance, the centroids
for baseline shift, especially for the violinist, move closer
to the performance centroids in later performances. This
could be indicative of a learning effect or adaptation to re-
peating the task. However, this effect was non-significant
for the pianist and imperceptible for the cellist, who had
low clustering accuracy for all recordings. If learning
and adaptation occurred at some parts but the cellist fared
worse in others, noticeable effects might have been can-
celled out. These results require further investigation.

The 2D plots, therefore, allow for tracking of the propor-
tional changes in linked values between two or more states
and for researchers to introduce other analysis methods,
such as clustering and other machine learning techniques,
for the classification of data points. Further, the ability
to express data visually opens up ways to transform HRV
classification problems to image recognition and computer
vision tasks. Therefore, the visualisation enables alternate
ways to efficiently view and analyse cardiac data.

5. Conclusion

We presented triangle simplex plots as a novel data vi-
sualisation tool for cardiac data. In an example study, we
used simplex plots to inspect the balance of three power
frequency components of heart rate variability for a trio
of musicians. We examined the relationship between the
components and applied spectral clustering to examine the
musicians’ data. The clustering on the simplex representa-
tion showed visible and quantifiable trends in the changes
between baseline and performing over nine recordings. We
found strong negative correlation in the clustering accu-
racy with the number of performance for the violinist and
pianist. This suggests a reduced distinction in HRV mea-
sures between baseline and performance.

Simplex plots can be a useful research tool for assess-
ing autonomic changes. They provide new avenues for
utilising image classification techniques in cardiovascu-
lar research and exploring musical learning and decreasing
stress in real-world tasks.
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