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Abstract

This study assessed the early detection of the risk of hy-
poxic ischemic encephalopathy using raw fetal heart rate
and its transformation with scattering transform and a
long short-term memory recurrent neural network. There
was no significant difference between the two approaches.
However, the use of scattering transform produced lower
computational demands. Considering scalability to the
large data in our database and computational efficiency,
the experiments involving scattering transform coefficients
will be selected to conduct subsequent experiments. Future
works will address the limitations of this study, including
the low model performance.

1. Introduction

The evaluation of both maternal and fetal health status
is carried out during labor using cardiotocography (CTG)
which measures both fetal heart (FHR) and uterine pres-
sure (UP). Healthcare providers rely on the visual inspec-
tion and interpretation of these CTG signals to identify
poor fetal oxygenation and take prompt actions to prevent
neonatal mortality or adverse outcomes [1].

A reduction in oxygen supply (hypoxia) and blood flow
(ischemia) to a newborn’s brain caused by intrapartum
events leads to hypoxic-ischemic encephalopathy (HIE)
[2]. This condition is marked by seizures, diminished
levels of consciousness, and respiratory challenges [3].
Neonates diagnosed with neonatal HIE experience signifi-
cant long-term impairments such as hearing loss, cognitive
impairments, and cerebral palsy [4]. The HIE incidence
rate is approximately 1-3 cases per 1,000 live births in de-
veloped nations [5]. In contrast, low- and middle-income
countries experience a higher incidence rate ranging from
10-20 cases per 1,000 live births [5].

The visual examination and interpretation of CTG sig-
nals poses some challenges. One notable issue is the sig-

nificant inter- and intra-observer variability, which has pro-
duced an increased frequency of assisted deliveries and CS
during childbirth [1]. Despite the availability of clinical
guidelines, there is a lack of specific management recom-
mendations for about 80% of FHR signals that are classi-
fied as “indeterminate risk” [6]. The above challenges, fur-
ther exacerbated by the low specificity of current methods,
contributes to missed diagnoses and unnecessary CS de-
liveries [7]. Unnecessary CS exposes the expectant mother
and the unborn child to risk without commensurate ben-
efits [8] while missed diagnoses can produce irreversible
brain injury and worse outcomes for the child.

Traditional machine learning (ML) techniques have
been examined to enhance the automated interpretation
of CTG signals. Nevertheless, the application of feature
engineering in ML has not yielded highly discriminative
features for FHR classification. This challenge could be
addressed using deep learning (Dl) methods. There have
been some promising studies on the detection of fetal dete-
rioration through DL. However, most of these studies did
not investigate cases of HIE, instead, they focused only
on hypoxia. Additionally, these studies employed rela-
tively small datasets, which may not support the devel-
opment of DL models, as these models typically require
large datasets. Hence, there exists a need to investigate
DL models on substantially large birth cohorts. Using our
database, containing 250,000 CTG records, we explore the
use of DL to improve the early detection of the risk of HIE.
This study presents the preliminary results of assessing two
approaches, using raw FHR and scattering transform (ST)
coefficients computed for FHR signals, with a long short-
term memory (LSTM) network to predict the intrapartum
risk of HIE.



2. Method

2.1. Clinical data

The clinical data comprises up to 72 hours of FHR, UP
and MHR signals obtained from singleton live births with
≥ 35 weeks of gestational age at 15 hospitals of Kaiser
Permanente Northern California with pregnancy onset date
from January 1, 2011, to December 31, 2018.

HIE was defined as the presence of both acidosis and en-
cephalopathy. Neonatal encephalopathy was defined as a
documented abnormal Sarnat score within the first 6 hours
of age, while acidosis was defined as pH < 7 or base
deficit ≥ 10 mmol/L measured from the umbilical cord gas
shortly after delivery. A further chart review by the clini-
cians was used to confirm the diagnosis of perinatal HIE.
The healthy class was defined as the absence of both en-
cephalopathy and acidosis, with no chest compression or
intubation, discharged alive and an Apgar at 5 minutes ≥
7. There were 39,213 healthy no acidosis cases, 3,223 aci-
dosis cases and 417 HIE cases in our database. The low
incidence rate of HIE accounts for the low number of HIE
cases. This study focused on FHR signals from all 417 HIE
cases and 418 randomly under-sampled healthy cases. A
random undersampling approach was selected to address
the highly imbalanced dataset to ensure the evaluation and
selection of a good baseline performing model while pre-
venting bias towards the majority healthy class.

2.2. Data preprocessing

PeriCALM Patterns, proprietary software from PeriGen
Inc., was used to remove noise, identity artifacts and re-
pair the FHR signals, which were sampled at 4Hz. The
repaired FHR signals were divided into 20-minute non-
overlapping segments. For experiments involving the raw
FHR (labeled RAW4), FHR were decimated by a factor of
4 to reduce computational time. In experiments involving
the time-frequency transformation of FHR (labeled ST64),
the sampling rate was reduced by a factor of 64.

2.3. Scattering transform

The scattering transform is a time-frequency represen-
tation that applies a series of wavelet transforms to a sig-
nal to produce translation-invariant, stable and informative
signal representations [9]. A wavelet filter (ψ) is applied
to a series of layers. At each layer, a signal in convoluted
with wavelet function(s) and passed through a non-linear
modulus function. The wavelet filter can be represented as

ψj(t) = 2−j/Qψ(2−j/Qt) (1)

where ψ is the mother wavelet, Q is a constant number
of filters per octave, and the scale J represents an integer

ranging 0 to J . We used the default mother wavelet, Mor-
let wavelet, with a quality factor Q = 1 and a maximum
wavelet scale of J = 11. Using J = 11 produces 1 zeroth-
order, 12 first-order and 63 second-order paths resulting in
76 order paths. The time scale (T ), which controls the de-
gree of time invariance was modified to T=64. We investi-
gated other time scales and found no significant difference
in the classification performance but selected T=64 to re-
duce computational load.

The first three orders of the scattering transform are:
S0x = x ⋆ ϕ

S1(t, j1) = |x ⋆ ψj1| ⋆ ϕ
S2(t, j1, j2) = ||x ⋆ ψj1| ⋆ ψj2| ⋆ ϕ

where ϕ represents a low-pass filter, ψ represents the
wavelet transform, || represent complex modulus and ⋆
represents convolution product. We concatenated the co-
efficients of the first three order paths to produce a time
series for subsequent classification experiments.

2.4. Classification

A 10-fold cross-validation technique was selected to
provide a more reliable estimate of the model’s perfor-
mance. The indexes for training, validation, and test were
randomly permuted for each fold and stratified by class,
resulting in the generation of ten distinct train, validation
and test sets. Each fold comprised 5 repetitions with dif-
ferent random initialization of the weights to aid the iden-
tification of unstable models or models that suffered from
over-fitting.

Classification experiments were conducted using a
three-layer LSTM model, striking a balance between
model performance and complexity. The number of cells
in each hidden layer was 128, 256 and 128, respectively.
For both RAW4 and ST64, the train and validation records
were used train and validate the models.

The best performing model from the 5 repetitions of
each fold was selected using the sensitivity and specificity
performance for the validation set. Initially, models with
average specificity exceeding 0.7 were selected, and subse-
quently, the model with the highest average sensitivity was
selected for each fold. In the absence of average specificity
exceeding 0.7, we selected the model with the highest aver-
age specificity and the highest average sensitivity. The ap-
proach of selecting the highest average sensitivity based on
a minimum specificity was to ensure that the performance
of the selected model did not exceed the current CS rate of
32% while detecting a substantial portion of pathological
fetuses and keeping the false positives to a minimum.

To prevent overfitting, an early stopping criterion of 30
epochs was implemented. Training was configured with a
maximum of 1000 epochs, a batch size of 32, the binary
cross-entropy loss function and the Adam optimizer with
learning rate of 0.0001.
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Figure 1. Sensitivity as a function of time before birth for
classification experiments using (A) scattering coefficients
(ST64), and (B) raw FHR (RAW). The solid line is a poly-
nomial line is fitted to the 10-fold results for each dataset.

All segments within the last 6 hrs of FHR before deliv-
ery were used for training and validation, while the trained
models were evaluated using independent segments within
the last 12 hrs. We saw no significant difference in perfor-
mance between experiments conducted with either 12 hrs
or 6 hrs, hence we restricted our training experiments to
the last 6 hrs of FHR to reduce computational load.

To compare the performance of using RAW4 and ST64,
the selected performance metrics (sensitivity, specificity,
AUROC) were computed on the independent test datasets
for the 10-fold cross validation. For each performance
metric, a polynomial regression with an appropriate order
was fitted to the metric performance across time. The op-
timal degree for each polynomial regression fitted to a per-
formance metric was selected using minimum description
length (MDL) principle. The rationale for using MDL is
based on finding a trade-off between an appropriate poly-
nomial order that fits the data well while avoiding overfit-
ting. Increasing the degree of a polynomial regression can
produce a complex model that fits to the noise within the
data rather than the true underlying pattern.

A bootstrapping approach was used to estimate the mean
and 95% confidence interval (CI) of the polynomial co-
efficients. Non-overlapping CI indicates statistical sig-
nificance, suggesting a significant difference between the
compared models. Bootstrapping was chosen due to the
small sample size and non-normal distribution of perfor-
mance metrics.

3. Results

Figures 1 and 2 show the various fold performance of
sensitivity and specificity for experiments using ST64 and
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Figure 2. Specificity as a function of time before birth for
classification experiments involving (A) scattering coeffi-
cients (ST64), and (B) raw FHR (RAW).

Coefficient #1 Coefficient #2
Mean [95% CI] Mean [95% CI]

RAW4 -0.029 [-0.040, -0.019] -0.001 [-0.002, -0.000]
ST64 -0.045 [-0.061, -0.030] -0.002 [-0.003, -0.001]

Table 1. The coefficients of quadratic polynomial com-
puted using bootstrapping technique on the 10-fold speci-
ficity performance.

RAW4 on the test data as functions of time before birth,
respectively. In the scatter plots, each color represents one
of the 10 folds across the time of delivery. For both ST64
and RAW4, the quadratic polynomial curve for sensitiv-
ity initiated at approximately 0.2, displaying an upward-
opening parabolic trend. Conversely, the quadratic poly-
nomial curve for specificity commenced slightly above 0.8
and exhibited a downward-opening parabolic pattern to-
wards delivery.

MDL consistently selected degree 1 and degree 2 for
AUROC and specificity for both RAW4 and ST64, respec-
tively. However, for sensitivity, degree 2 was selected for
RAW4 while degree 1 was selected for ST64. Degree 2
was selected to analyse the sensitivity due to the visible
non-linear trend of Fig. 1. Next, bootstrapping was used
to compute the mean and 95% CI of the coefficients of the
polynomial regression. The summary of the results is re-
ported in Tables 1 and 2 for specificity and sensitivity per-
formances of RAW4 and ST16. The overlap of the 95%
CI for RAW4 and ST64 leads to the conclusion that there
are no significant differences between the two approaches.
We reached a similar conclusion for AUROC (results not
shown).

The training times with the ST64 were very low com-
pared to the training time for RAW4. The mean and stan-



Coefficient #1 Coefficient #2
Mean [95% CI] Mean [95% CI]

RAW4 0.048 [0.037, 0.059] 0.002 [0.001, 0.003]
ST64 0.044 [0.034, 0.052] 0.001 [0.001, 0.002]

Table 2. The coefficients of quadratic polynomial com-
puted using bootstrapping technique on the 10-fold sensi-
tivity performance.

dard deviation of the training epoch duration for all repe-
titions of each fold using RAW4 and ST64 was 742.6 sec
± 202.1 sec and 10.0 sec ± 2.2 sec, respectively. This
is attributed to the dimensionality reduction and extraction
of relevant time-frequency features provided by scattering
transform. Experiments involving RAW4 required greater
number of epochs to converge due the reliance on the
LSTM alone to generate discriminative representations.

4. Discussion

Sensitivity, which measures the model’s detection of
HIE cases, improved for RAW4 and ST64 as delivery ap-
proached. The highest sensitivity of approximately 0.60
achieved close to delivery, suggests that 4 out of every 10
HIE cases may still be misdiagnosed at this late stage of
labour. Such a rate of misdiagnosis is undesirable within
a clinical context. Furthermore, the inherent issue of class
imbalance and the resulting low sensitivity may produce
false negatives, highlighting the need for improvement. To
maintain an acceptable false positive rate (FPR), the mini-
mum acceptable specificity was set at the current CS rate.
In future work, we will further explore the criteria to se-
lect the repetition with the best model for each fold. This
will involve the investigation of the threshold applied to
the softmax output probabilities in the final dense layer of
our deep learning models, ensuring that it results in FPR
lower than the current CS rate.

There were no statistically significant differences in the
performance of experiments conducted using RAW4 and
ST16. Our current experiments were constrained to a
dataset comprising 417 HIE cases and 418 randomly un-
dersampled healthy cases. This does not fully leverage the
potential of our large dataset. In subsequent experiments,
we will utilize ST64 as it imposes lower computational de-
mands and offers a significant advantage in terms of scal-
ability, especially when our future experiment extends to
our larger dataset and the requirement for experiments with
a shorter time frame becomes more evident.

5. Conclusion

This study aimed to assess the performance of two ap-
proaches with an LSTM network: one using raw FHR and
the other using scattering transform coefficients of FHR

signals . There was no statistically significant differences
observed between these two approaches. Nevertheless,
in consideration of computational efficiency and scalabil-
ity, we favor conducting subsequent experiments using the
scattering transform coefficients due to their lower com-
putational demands. Thus, this study has limitations, par-
ticularly related to the observed low model performance.
We plan to focus on improving model performance and
addressing these limitations in our future work.
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