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Abstract

Objective: Classify the left ventricular ejection fraction
of chagasic patients into preserved and non-preserved by
using electrocardiogram signals.

Context: Left ventricular ejection fraction is an im-
portant indicator of heart failure and predictor of sud-
den death. To estimate this indicator, echocardiography is
necessary, which is usually more expensive and restrictive
than electrocardiography.

Methods: Initially, we separated the signals into two
classes: ejection fraction less than 0.5 (class 1) and ejec-
tion fraction greater than or equal to 0.5 (class 2). We
used a Tukey’s boxplot to separate noisy beats from non-
noisy ones based on their duration. Next, we applied an
LSTM (Long-Short Term Memory) network to classify sets
of 200 beats of each signal. Finally, we applied an artifi-
cial neural network to obtain a class for the entire signal,
using the LSTM outputs of each set of 200 beats.

Results: We obtained, as the best result, an accuracy of
0.79 and a F1-score of 0.78.

Conclusion: We obtained satisfactory results. However,
we believe that they can be improved by a more sophis-
ticated beat selection method and a more robust LSTM
model.
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1. Introduction

In this work, we deal specifically with Chagas disease
(CD), an infection caused by the protozoan Trypanosoma
cruzi which, in its chronic phase, can cause serious cardio-
vascular problems, such as heart failure [1]. According to
the Brazilian Ministry of Health, 1.9 to 4.6 million people
have chronic cases of the disease in Brazil [1].

The Rassi [2, 3] score represents an important advance
in the prognosis of CD. However, this score is only appli-

cable to patients who already have the cardiac form of CD
and requires a complete set of tests, such as 12-lead ECG,
echocardiography, thorax radiography, and 24-hour Holter
[3].

Among the most relevant metrics for this score, the
left ventricular ejection fraction (LVEF), estimated by
echocardiography, is notable. LVEF corresponds to the
percentage of blood ejected from the left ventricle into the
aorta during systole, constituting an important indicator of
heart failure [4].

Access to public health is limited in Brazil, especially in
remote areas, where many patients remain on long waiting
lists for echocardiography. On the other hand, ECGs are
more common, cheaper, and more suitable than echocar-
diograms. Several studies [3, 5, 6] prove the capability
of machine learning algorithms to identify diseases from
electrocardiographic signals.

Often, these algorithms do not perform well in real-
world scenarios due to the unique characteristics of the
signals of each person, leading to unreliable performance
when trying to classify a new patient’s ECG signal [7].

A common approach to this problem is to add to the
training set a short signal (with a few minutes) from the
patient who wants to be diagnosed [7, 8].

The present study, on the other hand, seeks a model ca-
pable of accurately predicting LVEF from the analysis of
generic one-lead ECG signals, which means that no spe-
cific components are required for the diagnosis of a defined
patient.

2. Methodology

2.1. Data description

We used Holter signals from 219 patients with Chagas
heart disease, obtained at the Clementino Fraga Filho Uni-
versity Hospital – Federal University of Rio de Janeiro,
Rio de Janeiro, Brazil. Each signal is 4 hours long, with



a sampling rate of 128Hz. The local ethics committee ap-
proved the survey (number 45360915.1.1001.5262).

In addition, we received the LVEF value for each pa-
tient/exam and files containing, for each beat of each sig-
nal, the positions of the beginning, peak and end of the P
wave, the beginning and end of the QRS complex, the R
peak and the beginning, peak and end of the T wave.

2.2. Preprocessing

There is no consensus when defining a threshold be-
tween compromised and preserved LVEF, so this can be
35%, 40%, 45%, or 50% [9]. Therefore, we chose to use
the guidelines of the American Heart Association [10],
which define LVEF ≤ 40% as reduced, 41% ≤ LVEF
≤ 49% as slightly reduced and LVEF ≥ 50% as preserved.

In this work, we opt for a binary classification, where
class 1 represents a not preserved LVEF (≤ 49%) and class
2 represents a preserved LVEF (≥ 50%).

Then, we divided our dataset into three subsets: training
set (with 72.25% of data), validation set (with 12.75% of
data) and test set (with 15% of data).

Next, we define a beat window (BW) as starting at
the start of each P wave and ending at the end of the
subsequent T wave. For each signal, we removed the
beats whose length exceeded the lower or upper limits of
Tukey’s boxplot and, after that, we applied a zero padding
to leave the remaining BWs with the same length.

The process of removing outliers using Tukey’s boxplot
was necessary due to anomalies (artifacts) that appeared in
some signals (see Figure 1). Usually, excessively long or
short BWs are artifacts.

Figure 1: Examples of artifacts present on signals.

However, the removal process breaks (to some extent)
with the sequential character of the signals, making the
classification task difficult. An issue is discussed later.

2.3. Processing

LSTM networks, due to their ability to store informa-
tion for long periods of time, are ideal for dealing with

time-series patterns, such as ECG signals. Therefore, we
propose an LSTM network architecture that receives al-
most sequential sets of 200 BWs (approximately 5 min-
utes) as input. We say almost sequential, as the chaining
of these BWs may have been affected by removals made
by Tukey’s boxplot.

We also chose to train the LSTM network with sets of
BWs for two main reasons. First, training with sets of BWs
is faster than training with several single BWs. Second,
with a sequence of BWs as input, the network can extract
information that could not be obtained with an isolated sin-
gle BW (such as the distance between the R peaks, for ex-
ample).

The proposed network is shown in Figure 2. The ana-
lyzed model is initially composed of N consecutive LSTM
layers, each containing U units.

Next, we add M dense layers, where the first has k neu-
rons, the second ⌊k/21⌋, the third ⌊k/22⌋, and so on. We
chose to use a ReLU activation function in all dense layers,
except for the output layer. Each fully connected layer is
followed by a dropout layer of rate D.

Finally, we have the output layer with 2 neurons. We
choose the softmax activation function, which, in this case,
is equal to the sigmoid function.

Figure 2: Proposed architecture.

Furthermore, for the calculation of the error, we opted
for the categorical cross-entropy function.

All the mentioned variables (N , U , M , k, D) were de-
fined through Bayesian optimization (BO). Below, we can
observe the intervals where we pre-set the algorithm to
seek optimal values.

• Number of LSTM layers (N ): 1 ≤ N ≤ 4 , N ∈ Z
• Number of units of each LSTM layer (U ): U =
20 · u, where 3 ≤ u ≤ 8 , u ∈ Z

• Number of dense layers (M ): 1 ≤ M ≤ 4 , M ∈ Z
• Number of neurons in the first dense layer (k): k =
2K , where 5 ≤ K ≤ 7 , K ∈ Z

• Dropout rate for each dense layer (D): 0.3 ≤ D ≤
0.6 , D ∈ R

• Batch size (L): L = 2l, where 6 ≤ l ≤ 9 , l ∈ Z
• Optimizer (ot): ot = {Adam, RMSprop, Adadelta,

Adagrad, Adamax, SGD}



• Learning rate (η): η = {0.1, 0.01}
We adopted, as covariance function, the Matérn function

with ν = 1.5 and, as acquisition function, the LSC func-
tion with κ = 2.576, standard parameters for the library
Bayesian Optimization [11]. The objective function is the
accuracy in the validation set.

We configured the BO to perform 35 random iterations
and 85 iterations of the Bayesian algorithm itself. In Fig-
ures 3a and 3b, it is possible to see, respectively, the con-
fusion matrix of the best model and its learning curve.

Observing Figure 3b, it is possible to realize an overfit-
ting, probably caused by the gaps left in the ECG signal by
the Tukey’s boxplot removal process.

(a) Validation set confusion
matrix.

(b) Learning curve.

Figure 3: Best performing model results.

As already mentioned, the classification process shown
in Figure 3a refers to sets of 200 BWs. Therefore, we need
a strategy to classify a full signal based on the classifica-
tion results of its sets of 200 BWs. Remember that, for
each set of classified BWs, the network returns (due to the
softmax function) a tuple of two elements corresponding to
the probability that the input belongs to class 1 and class
2, respectively.

Therefore, we adopted the strategy explained in the fol-
lowing subsection.

2.4. Classification Method

Imagine, for example, a signal with 1000 BWs, that
is, 5 sets of 200 BWs. If, the output generated by
LSTM, for each of these sets, is: [0.6, 0.4], [0.1, 0.9],
[0.2, 0.8], [0.55, 0.45] and [0.65, 0.35], we can, then,
add all corresponding probabilities. Therefore, we have
a total of 0.6+0.1+0.2+0.55+0.65 = 2.1 for class 1 and
0.4+0.9+0.8+0.45+0.35 = 2.9 for class 2.

Instead of just verify which value is bigger, it is possible
to pass the tuple [2.1, 2.9] as input of an Artificial Neural
Network (ANN). This procedure seems more interesting,
as the ANN can establish weights and thresholds for the
probabilities of each class, improving the comparison pro-
cess.

As, in general, we have few sets of 200 BWs per sig-
nal, we proposed a very simple architecture for the ANN,

which can be seen in Table 1.

Layer Nº of neurons
Dense 32
Dense 8
Dense 4

Softmax 2

Table 1: Proposed ANN model. Figure 4: ANN con-
fusion matrix.

For training the ANN, we used the Adam optimizer, a
batch size equal to 8 and a learning rate equal to 0.001. The
model was trained for 800 epochs. The resulting confusion
matrix (for the validation set) can be seen in Figure 4

3. Results

In this section, we apply the LSTM model, followed by
the ANN, to the test set.

Initially, applying the LSTM network to classify the sets
of BWs, we obtain the results shown in Figure 5 and in
Table 2

Figure 5: Confusion ma-
trix related to the classifi-
cation of sets of 200 BWs
in the test set.

Figure 6: Confusion ma-
trix related to the ANN
classification.

Precision Recall F1-score

Class 1 0.78 0.63 0.70
Class 2 0.71 0.84 0.77

Accuracy 0.74
Macro 0.75 0.73 0.73

Weighted 0.74 0.74 0.74

Table 2: Metrics related to the classification of sets of 200
BWs in the test set.

In Table 2, we call a metric ’macro’ when it is equivalent
to the arithmetic mean of the individual metrics of each
class. Furthermore, we call a metric ’weighted’ when it is
equivalent to the weighted mean of the individual metrics
of each class, where the weights are proportional to the
number of samples of the respective classes.



Finally, applying the ANN provides to obtain the results
seen in Figure 6 and Table 3.

Precision Recall F1-score

Class 1 0.92 0.65 0.76
Class 2 0.71 0.94 0.81

Accuracy 0.79
Macro 0.82 0.79 0.78

Weighted 0.82 0.79 0.78

Table 3: Metrics related to the ANN classification.

4. Conclusion

The results evidence the capability of the proposed
model to differentiate ECG signals from patients with pre-
served and non-preserved LVEF. However, the metrics ob-
tained (accuracy of 0.79 and F1-score of 0.78) reveal that
this model isn’t ready to be applied in real-world scenarios,
where metrics above 0.9 would be desirable.

In part, these limitations are caused by Tukey’s boxplot
within the BWs selection. Since this method only con-
siders the duration of the BWs, it is not capable to really
differentiate noisy and non-noisy beats. Furthermore, the
removal of beats breaks with the sequential character of
the signals, making the learning process even harder.

Therefore, in future works, it would be extremely impor-
tant to implement a more robust noise detection algorithm,
such as noise automatic classification algorithm (NACA)
[12] or quality measurement algorithm (QMA) [13].
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