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Abstract 

Nowadays, Electrocardiogram (ECG) signals can be 

measured using wearable devices, such as smart watches. 

In this study, 12-lead ECG signals were generated from 

lead I and their feasibility was tested to obtain more 

details. The 12-lead ECG signals were generated using a 

U-net-based generative adversarial network (GAN) that 

was trained on ECG data obtained from the Asan 

Medical Center. Subsequently, unseen PTB-XL PhysioNet 

data were used to produce real 12-lead ECG signals for 

classification. 

The generated and real 12-lead ECG signals were then 

compared using a ResNet classification model; and the 

normal, atrial fibrillation (A-fib), left bundle branch 

block (LBBB), right bundle branch block (RBBB), left 

ventricular hypertrophy (LVH), and right ventricular 

hypertrophy (RVH) were classified. The mean precision, 

recall, and f1-score for the real 12-lead ECG signals are 

0.70, 0.72, and 0.70, and that for the generated 12-lead 

ECG signals are 0.82, 0.80, and 0.81, respectively. 

The generated 12-lead ECG signals perform better 

than real 12-lead ECG signals. In this study, the 12-lead 

generative model was evaluated by classifying the 6 

diagnostic classes, and the results showed that generated 

12-lead ECG signals can be used to diagnose cardiac 

diseases. 

 

 

1. Introduction 

Cardiovascular diseases (CVDs) comprise a series of 

heart blood-vessel abnormalities, which are one of 

leading reasons for deaths worldwide. ECG signals are 

typically used in the early prediction and general 

diagnosis of abnormal heart rhythms. Typically, 12-lead 

ECG signals are used to diagnose cardiac diseases [1]. 

Heart diseases often cause an irregularity in the heart 

called arrhythmia, wherein A-fib is the most common 

cardiac arrhythmia. However, real-time ECG 

measurement is required for early diagnoses. 

In this regard, wearable ECG measurement devices are 

currently in use, with more being developed. Holter ECG 

devices were developed for long-term ECG monitoring 

[2]; however, owing to their limitations, ECG monitoring 

devices, such as patches and watches, were developed. 

These methods can be used to only measure one of the 12 

leads. It is now possible to monitor the patient’s ECG 

from their bedside. These ECG monitoring devices are 

less complex and expensive compared to conventional 

methods. However, wearable devices, such as patches and 

smart watches, have a critical limitation; they can only 

measure lead I. Generally, lead I can be representative of 

limb leads but not precordial leads. Therefore, abnormal 

cardiac diseases, such as RBBB, LBBB, RVH, and LVH, 

cannot be diagnosed [3]. Although single-lead devices are 

widely used, they are rarely used for diagnoses owing to 

their lack of information and difficulty in application for 

medical use [4]. 

 

2. Methods 

In this study, the ECG generation model was based on 

that in our previous study [5]. The pix2pix GAN model 

was trained using MUSE data on patients who had visited 

the Seoul Asan Medical Center Hospital between January 

01, 2001, and February 28, 2022. For classification, the 

PTB-XL database was used as external data, and 

evaluation was based on the F1-score, precision, recall, 

and accuracy. The overview of this study is illustrated in 

Figure 1. 

2.1. Datasets and Preprocessing 

The 12-lead ECG data used in this study were obtained 

from the MUSE and PTB-XL databases [6]. The PTB-XL 

dataset contains 21,837 records obtained from 18,885 

patients, and the MUSE database comprises 400 million 

records obtained from the Asan Medical Center Hospital. 

The experimental protocols in the data were approved by 

the Institutional Review Board (IRB) at the Asan Medical 

Center Hospital, under the approval number IRB No. 

2022-0781. 

 



2.2. GAN Architecture 

    GAN consists of two main networks: a generator and 

discriminator [7]. The basis of GAN is a minimax game 

between the generator and discriminator. In this study, the 

generator considers lead I as the input and synthesizes the 

remaining leads; and the discriminator distinguishes the 

generated signals from the real ones. Figure 1 depicts the 

overall architecture of the proposed model. The proposed 

model follows the main objective of conditional GAN, 

which can be expressed as shown in (1). Conditional 

GANs [8] learn mapping based on the relationship 

between the signal x and random noise vectors z and y [9]. 

 

ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥,𝑦[𝑙𝑜𝑔𝐷(𝑥, 𝑦)] + 𝔼𝑥,𝑧[log(1 −

𝐷(𝑥, 𝐺(𝑥, 𝑧))],        (1)

     

ℒ𝐿1(𝐺) = 𝔼𝑥,𝑦,𝑧[‖𝑦 − 𝐺(𝑥, 𝑧)‖],     (2) 

 

where G tries to minimize the objective of GAN against 

D, which tries to maximize it (1). Moreover, L1 loss was 

used (2); thus, the final objective of GAN was 

represented as follows: 

 

𝐺∗ = 𝑎𝑟𝑔min
𝐺

max
𝐷

ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺).   (3) 

 

2.3. Evaluation Method 

The classification of the generated 12-lead ECG 

signals was performed using the ResNet model. The 

normal ECG, RBBB, LBBB, LVH, RVH, and A-fib 

values were then used to evaluate the classification 

classes. The A-fib and normal ECG were used because 

most out-of-hospital wearable devices are used to detect 

AF, and both normal ECG and AF can be classified using 

single-lead ECG measurement [10]. By contrast, RBBB, 

LBBB, LVH, and RVH were diagnosed using the 

precordial leads. To test the feasibility of the 12-lead 

ECG generated from lead I, 5 different methods were 

compared. First, the classification results of the generated 

12-lead ECG and real lead-I ECG signals were compared. 

To verify the disadvantages of single-lead measurement, 

the classification performances of the generated 12-lead 

ECG and real lead-I were compared. Second, the 

classification results of the generated 12-lead and real 12-

lead ECG signals was compared. The Einthoven triangle 

formula [11] was then applied to the generated 12-lead 

ECG signals to conduct the ablation study. Therefore, 

three different groups of leads were used in the 

experiment: input lead I and generated lead II, input lead I 

and generated lead III, and input lead I and generated lead 

II, III. The groups were separately evaluated to determine 

the best outcome results and differences in the number of 

generated leads. 

All the five different sets of methods were evaluated 

based on their precision, recall and f1-score values; and 

PTB-XL external data were used to train and evaluate 

each classification method. 

 
Figure 1.  Overview of the proposed method. Generated ECG and real ECG signals are equally preprocessed, 

trained, and classified using the same ResNet model. The output of the classification model is normal, A-fib, CLBBB, 

CRBBB, LVH, and RVH. 



 

3. Results 

In this section, the generated signals from the PTB-XL 

database and their evaluation scores are presented and 

compared. The evaluation of the generation model 

performance was performed in our previous study [5]. 

The evaluation scores for all five results are shown in 

Table 1 and Table 2.  

The precision, recall, and f1-score values of the 

generated 12-lead ECG signals and classification 

performance results of real lead-I are shown in Table 1, 

where the best results are highlighted in bold. The 

generated 12-lead ECG signals exhibited the best results 

followed by the generated lead II. This shows that multi-

lead ECG classification is more accurate. Particularly, the 

classification results of the abnormal ECG signals that are 

typically diagnosed at the precordial lead show a 

significant difference. The classification performance of 

all real 12-leads is shown in Table 2, where real lead 

exhibited poor results using both the 12-lead ECG and 

single lead I signals. Therefore, generating only Lead II 

or Lead III and calculating the rest of limb leads using the 

Einthoven formula reduces both the model complexity 

and time. 

 

4. Discussion 

This study demonstrates that generated ECG signals 

are capable of diagnosing CVDs. To the best of our 

knowledge, no previous studies have explored the 

generation of all 12-lead ECG signals and compared their 

classification performance. Previous and related studies 

have only focused on data augmentations.  

Single-lead ECG signals can be better classified by 

implementing the proposed method to classify CVDs, 

which improves the disadvantages of single-lead ECG 

signals. This method enables the real-time analysis of 

ECG signals through single-lead ECG measurement, 

thereby allowing the use of single-lead ECG 

measurement devices, such as smart watches, on both 

patients and the public. Therefore, the proposed method 

can be used to alert users and patients of potential danger. 

Additionally, single-lead measurement, which is a more 

comfortable method, can be adopted in hospitals instead 

of 12-lead standard ECG measurement. 

This study presented the feasibility of generated ECG 

signals for use in diagnosis. The obtained results were 

better than those of real ECG signals, which can be 

implemented in single lead devices. The accuracies, 

precisions, and F1 scores of the generated 12-lead ECG 

are shown in Table 1 and Table 2. The normal class 

values are 0.89, 0.92, and 0.91; the A-fib class values are 

0.96, 0,76, and 0.84; the LBBB values are 1, 0.96, and 

0.98; the RBBB results are 0.87, 0.77, and 0.82; the LVH 

results are 0.82, 0.94, and 0.87; and the RVH values are 

0.38, 0.47, and 0.42, respectively. The proposed method 

can also be used to provide insights into various 

pathological cardiac diagnoses features. This will allow 

the monitoring of personalized ECG signals during in- 

and out-of-hospital care, where the cardiologist keeps 

patient records over a long time. Moreover, further 

assessment can be made by the cardiologist when a 

remarkable CVD is detected during the patient’s daily life. 

Table 1 Evaluation of the Performance Score of the Generated ECG signals 

  Generated 12-Lead Lead II by GAN Lead III by GAN Lead II, III by GAN 

  
Preci

sion 
Recall 

F1-

score 

Precisio

n 
Recall 

F1-

score 

Precisio

n 
Recall 

F1-

score 

Precisio

n 
Recall 

F1-

score 

Normal 0.89 0.92 0.91 0.88 0.82 0.85 0.92 0.81 0.86 0.79 0.93 0.85 

Afib 0.96 0.76 0.84 0.94 0.72 0.81 0.92 0.88 0.9 0.85 0.91 0.88 

CLBBB 1 0.96 0.98 1 0.95 0.97 1 0.94 0.97 1 0.92 0.96 

CRBBB 0.87 0.77 0.82 0.89 0.78 0.83 0.89 0.85 0.87 0.84 0.81 0.83 

LVH 0.82 0.94 0.87 0.77 0.96 0.85 0.81 0.93 0.87 0.91 0.80 0.85 

RVH 0.38 0.47 0.42 0.49 0.31 0.38 0.52 0.51 0.51 0.42 0.19 0.26 

 
Table 2 Evaluation of the Performance Score of Real ECG signals 

 Real Lead I Real 12-Lead ECG 

 Precision Recall 
F1-

score 
Precision Recall 

F1-

score 

Normal 0.63 0.77 0.69 0.72 0.84 0.78 

Afib 0.66 0.69 0.67 0.70 0.88 0.78 

CLBBB 0.78 0.73 0.75 0.81 0.85 0.83 

CRBBB 0.64 0.71 0.67 0.70 0.71 0.70 

LVH 0.68 0.56 0.62 0.87 0.61 0.72 

RVH 0.25 0.16 0.20 0.40 0.43 0.41 

 



Most of all, the novelty of our study is: 

(1) A large dataset of over 400 million data is used to 

train the generative model.  

(2) No other study has investigated the use of generated 

ECG signals for diagnosis. 

(3) Generated ECG classification exhibits a better 

performance than reference single-lead ECG 

classification, indicating that the information obtained 

from the precordial leads are crucial. 

As shown in Table 1 and Table 2, the proposed method 

produces a better performance than real ECG 

classification. However, a few limitations exist in this 

study. First, 6 CVD types containing both precordial and 

limb leads were classified. Nonetheless, there are various 

of types of CVDs, such as acute MI (AMI), that are life-

threatening. Certain MI, such as ST elevation, are fairly 

classified using DL (deep learning) [12] [13] [14]. 

However, there are very few AMI record data available 

owing to its high mortality rate. In the future, more focus 

should be placed on critical CVDs, which can require out-

of-hospital care. Second, for the lead I ECG signals, the 

input in the proposed method was based on standard 12-

lead ECG records. No open data were measured using 

both the single-lead device and standard 12-lead ECG.  

 

5. Conclusion 

This study presents a method for generating 12-lead 

ECG signals that can be used to classify CVDs using DL. 

ECG data obtained from the Asan medical center and 

containing 400 million records was used. External data 

from the PTB-XL database were also used to classify 6 

types of cardiac diseases present in the limb and 

precordial leads. Additionally, the performance of the 

classification results was compared with those of real and 

generated ECGs. Consequently, the proposed method 

exhibited outstanding results during classification, which 

can be applied in real-life ECG monitoring. Single-lead 

ECG devices are simple and comfortable to wear; 

however, owing to the lack of lead information, rhythm 

features are mainly used to detect abnormal ECG. This 

approach can be used to solve for the disadvantages of 

single-lead ECG devices, thereby helping in out-of-

hospital CVD detection, which is a crucial step in 

personalized medicine. 
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