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Abstract

Aims: Optimal reward formulation in Reinforcement
Learning (RL) is still uncertain. The aim of this study is to
show that formulating a reward in RL for sepsis treatment
using Mean Arterial Pressure (MAP) is a viable solution
and can improve patient outcomes.

Methods: The data were extracted from the MIMIC-
III database. Patient data from 20,496 intensive care unit
(ICU) stays were modeled with two different Markov De-
cision Processes that differed in reward formulation. The
Mortality Model had a reward function linked only to 90-
day mortality, and the Target MAP Model had an addi-
tional reward component that penalized the RL agent if the
patient’s MAP fell below 65 mmHg.

Results: The Target MAP Model achieved the best re-
sults with a 95% lower bound (LB) of estimated policy
value equal to 88.64 compared to 86.01 obtained from
the Mortality Model despite having a more penalizing re-
ward. The Target MAP Model in hypotensive patients uses
less intravenous fluids and resorts more often to aggressive
dosages of vasopressors.

Conclusions: The results show that tying the reward to
MAP is a viable approach, and the less sparse reward that
comes with tying the reward to high temporal resolution
cardiovascular features allows to evaluate single actions
rather than the whole sequences of actions leading to the
final outcome, allowing the RL agent to learn a better pol-
icy.

1. Introduction

Sepsis is a complex condition that can develop when the
body’s immune response to an infection becomes dysreg-
ulated and begins to damage its own tissues and organs. It
is a major cause of morbidity and mortality worldwide, af-
fecting millions of people each year [1]. Despite advances
in medical technology and treatment strategies, sepsis re-
mains a significant healthcare challenge and there is an ur-
gent need for more effective approaches to its management
[2].

One promising approach to improving sepsis manage-
ment is the use of Reinforcement Learning (RL), an Arti-
ficial Intelligence (AI) technique that involves training an
agent to make decisions based on feedback from its en-
vironment. In the context of sepsis management, RL can
be used to train an agent to make treatment decisions that
optimize a specific goal, such as reducing mortality and
improving patient outcomes.

In the literature, RL agents in sepsis treatment have been
trained using a reward function that is based on mortality
outcomes [3, 4]. This formulation rewards the agent for
reducing the likelihood of the patient dying, the rationale
behind this choice is that in this way the RL agent will min-
imize mortality [5]. However, recent research has provided
strong recommendations on some aspects of sepsis man-
agement, such as a target mean arterial pressure (MAP) of
65 mmHg [6], so including these vital parameters in the
reward formulation may lead to more effective treatment
strategies learned by the RL agent.

MAP is a key physiologic parameter in sepsis manage-
ment as it reflects the adequacy of tissue perfusion and
the ability of the cardiovascular system to maintain blood
flow to vital organs. In sepsis, hypotension and hypoper-
fusion can lead to organ dysfunction and failure, and MAP
is a critical parameter to monitor and manage in the clin-
ical setting. By providing feedback to the RL agent on
MAP levels, it will be incentivized to maintain a target sta-
ble blood pressure, possibly leading to better patient out-
comes.

In this study, we will explore the use of MAP reward for-
mulation in sepsis treatment using reinforcement learning.
We will compare the learned policies of an agent that only
minimizes mortality and an agent that also considers MAP
levels. We will also discuss the potential benefits and lim-
itations of the two different reward formulations in sepsis
management. In this study, we define the reward formula-
tion of the Markov Decision Process (MDP) as ”optimal”
if the agent generated minimizes mortality rates among
treated patients.

By analyzing the treatment decisions made by the two
different RL agents, we can gain insight into the factors



that contribute to better patient outcomes and identify areas
where existing treatment strategies can be improved.

2. Methods

2.1. Data description

This study uses data from the Multi-parameter Intelli-
gent Monitoring in Intensive Care (MIMIC III) database
[7]. The database includes information from 53,423 hospi-
tal admissions of patients aged 16 years or older, collected
between 2001 and 2012.

The cohort consists of individuals who meet the sepsis-
3 criteria: if a patient had a microbiological specimen col-
lected prior to antibiotic administration or within 24 hours
of a previous antibiotic administration. In the case of mi-
crobiological specimens, sepsis is defined only if the an-
tibiotic is administered within 72 hours of the specimen.
The time of sepsis onset is determined as the time of the
earliest event according to [8].

Patients were excluded if they were under 18 years of
age at the time of enrollment, had no documented mortality
or intravenous fluid (IV) administration, or had treatment
discontinued due to nonrecovery. Treatment discontinua-
tion was defined as those who died within 24 hours of the
end of data collection and did not receive a vasopressor
(VP) during the last 24 hours of data collection, but had
received at least one previous administration.

The total number of ICU stays that meet the require-
ments is 20,496.

The data used in this study cover a period from 24 hours
before the estimated onset of sepsis to 48 hours after the
estimated onset of sepsis. The data are organized in 4-hour
time intervals as a time series. When multiple observations
were available for a variable in a given time interval, they
were appropriately summarized by averaging or summing,
depending on the variable type. The dataset includes 48
clinical variables including the two treatments of interest:
IVs and VPs.

To address the problem of sparsity in clinical time series
data, a zero-order interpolation approach is used. Remain-
ing missing data are then imputed by interpolation. The
data are divided into 80% for training and 20% for testing.

2.2. Markov Decision Process

The data are used to construct two different Markov De-
cision Processes (MDPs). At each time step, patients are
assigned to a state using a k-means++ algorithm, result-
ing in a total of 750 clusters. Additionally, two absorbing
states are included in the analysis, one for patient survival
and the other for patient death.

The available treatments for IVs and VPs are binned
to define the actions in the MDP. A total of five bins are

created for each treatment type. One bin is reserved for
zero dose, while the remaining four bins are defined by the
25%, median, and 75% percentiles. This process results in
a total of 25 possible interventions.

Transitions that occur less than five times are excluded
to force the RL agent to choose only the actions commonly
used by clinicians, resulting in a safer policy.

In this work, we have formulated two different MDPs,
which differ in the reward formulation:

• Mortality Model: In this MDP, the reward is always
zero, except for the terminal states. If the model transitions
to the ”survived” state, the agent is rewarded +100, and
if the model transitions to the ”dead” state, the agent is
penalized with a reward of -100.

• Target MAP Model: In this MDP, the model is re-
warded zero if it visits a state with a MAP equal to or above
the target of 65 mmHg, otherwise the agent is penalized
with a negative reward R = MAPcurrent− 65. The agent
also receives the reward linked to the final outcome of the
patient, formulated in the same way as the other model;
patient survival is rewarded with +100, patient death is pe-
nalized with a reward of -100.

2.3. Optimal Policy and Policy Evaluation

To determine the optimal policy in both the Mortality
Model and the Target MAP Model, we used a policy itera-
tion algorithm.

The policy iteration algorithm first evaluates a random
policy, and then improves the policy by updating the op-
timal action for each state. This process must be repeated
until we converge to the optimal policy [9].

Using temporal difference (TD) learning, we were able
to estimate the policy value of the clinicians:

Qπ(s, a)← Qπ(s, a) + α(r + γQπ(s′, a′)−Qπ(s, a))
(1)

r is the immediate reward, s’ is the future state, a’ is the
future action, Qπ(s, a) is the state-action value function, α
is the learning rate and γ is the discount factor.

To evaluate the optimal AI policy on existing obser-
vations generated with the clinicians’ policy, we used
off-policy evaluation with weighted importance sampling
(WIS). The clinicians’ policy was considered as the behav-
ior policy πC , and the AI policy as the evaluation policy
πAI . The cumulative importance ratio up to step t was de-
fined as ρ1:t :=

∏t
t′=1 πAI(at′ |st′)/πC(at′ |st′), and its

average at horizon t as wt =
∑N

i=1 ρ1:t(i)/N , where N
is the number of trajectories. The trajectory-wise WIS
estimator, VWIS = ρ1:T

wT

∑T
t=1 γ

t−1rt, is then averaged
for all trajectories to derive the overall WIS estimator as
WIS = 1

N

∑N
i=1 V

(i)
WIS .



Figure 1. The figure shows the evolution of the 95% LB
of the optimal RL policy and the 95% UB of the clinician’s
policy for both built models.

3. Results

To evaluate the effectiveness of the optimal policies of
the Mortality Model and the Target MAP Model, we plot-
ted the evolution of the 95% Confidence Lower Bound
(LB) of the policy value during training, which represents
the safety and effectiveness of the estimated optimal pol-
icy, and compared it to the 95% Confidence Upper Bound
(UB), which is an optimistic estimate of the clinicians’ pol-
icy performance.

Figure 1 shows the performance of the optimal policy
of the Mortality Model. The 95% confidence value of the
optimal policy, shown with a solid orange line, converges
to a value of 86.01, while the clinician’s policy, shown with
a solid blue line, obtains a value of 56.40. The performance
of the optimal policy of the MAP model is also shown in
figure 1 with a dashed purple line and reaches a value of
88.64, while the clinician’s policy in the Target MAP model
is shown with a dashed yellow line and reaches a value of
54.55.

To assess the difference between the two strategies in
managing patients with a MAP equal to or less than 65
mmHg, we visualized the normalized frequencies of ac-
tions performed on patients with a MAP equal to or less
than 65 mmHg in the test set.

Figure 2 shows the normalized frequencies of IVs for
the Mortality Model, Target MAP Model and clinicians’
policy.

The Target MAP Model, uses far fewer IVs, avoiding

Figure 2. Normalized frequencies of the intravenous fluid
dosages selected by the RL agent to treat patients with
MAP < 65 mmHg for both the models built and the clini-
cians’ choices.

them 27.8% of the time, while the Mortality Model, avoids
IVs only 5.5% of the time, similar to the clinicians. The
latter model also uses the maximum dosage of IVs 48% of
the time.

The Target MAP Model has an interesting behavior, us-
ing moderate doses of VPs (0.08-0.20 µg/kg/min) more
sparingly, only 13.7% of the time, while the Mortality
Model uses them 39.2% of the time.

The Target MAP Model tends to have a more aggressive
treatment strategy, using high doses (>0.45 µg/kg/min)
13.7% of the time and moderately high doses (0.20-0.45
µg/kg/min) 23%, while the Mortality Model uses them
only 8.6% and 12.6%, respectively. Clinicians tend to
avoid VPs, not using them 67.3% of the time.

4. Discussion

The goal of this study is to compare the effect of dif-
ferent reward formulations on the optimal policy learned
by the AI agent. Some authors in the literature state that
putting all the reward on mortality is desirable because in
this way the RL agent should only minimize mortality, the
rationale behind this is that formulating a reward linked to
any other variable actually puts undesirable constraints on
the agent that reduce its freedom to find the optimal treat-
ment strategy [5].

However, a reward assigned to mortality results in a
sparse reward, and the agent receives feedback on its ac-
tions only at the end of the trajectory. This makes it very
difficult to assign credit to specific actions, since with the
sparse reward we are evaluating the sequence of actions
that lead to the final outcome (mortality), rather than the
single action taken in a particular state.



Figure 3. Normalized frequencies of the vasopressors
dosages selected by the RL agent to treat patients with
MAP < 65 mmHg for both the models built and the clini-
cians’ choices.

To address this issue, we propose to link the reward of
the MDP to mean arterial pressure (MAP), a physiologi-
cal parameter considered important in the management of
sepsis by clinical guidelines [6] and previous work in the
literature has also shown the primary importance of car-
diovascular signals (including MAP) in the application of
RL to sepsis treatment strategies [10, 11].

The Target MAP Model, despite having a more punitive
reward formulation, achieves slightly better performance
than the Mortality Model, showing that intermediate re-
wards have the power to provide timely feedback to the
RL agent before the final step of the trajectory.

To gain further insight into the choice of agents when
treating patients with a MAP < 65 mmHg, we plotted the
normalized frequencies of actions for both the Target MAP
Model and the Mortality Model. The former model uses
intravenous fluids more sparingly, prioritizing the admin-
istration of high doses of VPs (> 0.20 µg/kg/min). Since
the Target MAP Model is the best performing model, this
suggests that using aggressive doses of VPs to bring MAP
to a target level of 65 mmHg may be desirable.

Frequent use of high dosages of IVs of the Mortality
Model may be undesirable because hypotensive patients
do not fully respond to IVs later in the ICU stay, worsening
their condition and causing edema [2], which partially ex-
plains the worse performance than the Target MAP Model.

5. Conclusion

In conclusion, this study shows that formulating the re-
ward function using prior medical knowledge is not nec-
essarily worse than linking the entire reward to the out-
come of interest, in this case mortality. Formulating re-

wards using cardiovascular signals also has the advantage
of providing immediate feedback to the agent and, thanks
to the high temporal resolution of cardiovascular variables,
allows the evaluation of individual actions rather than a
collection of actions.
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