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Abstract

Automatic abnormal ECG detection algorithms are cru-
cial for treating heart health problems and saving lives.
This study’s objective is to verify whether using unsuper-
vised learning methods and more specifically probabilis-
tic and deep learning models such as autoencoders, varia-
tional autoencoders (VAE), diffusion Models, partial shift
variational autoencoder (our implementation of half VAE
half prediction model), normalizing flows and Gaussian
mixture models to detect outliers in ECG data is possi-
ble. An outlier for our case is an abnormal ECG signal,
a one belonging mostly to a sick person while the normal
case is that of a normal healthy person. The results have
shown that the models distinguish between normal and ab-
normal data to a specific degree, with the VAE achieving
an area under the curve (AUC) of the receiver operating
characteristic curve score of 0.85 on the publicly available
PTB-XL dataset and 0.83 on the publicly available CPSC
dataset. Moreover, the VAE achieved an AUC of 0.89, 0.80
and 0.81 when distinguishing between normal and conduc-
tion disturbance, myocardial infarction, and ST/T Change
respectively. This indicates that a VAE when optimized it-
self and fed with more proper data may be able to be used
in medical applications.

1. Introduction

Cardiac problems are the number one reason for death
globally causing 17.9 million deaths globally annually
[1]. Electrocardiography (ECG) is a safe, noninvasive and
easy to do diagnostic test to detect heart disease, it is the
most frequent cardiovascular test with nearly 200 million
ECGs recorded annually in the globe, it is crucial for the
evidence-based management of cardiovascular conditions
[2]. For the ECG case, be able to classify abnormalities
by their deviations from the normative distribution through
calculating the error between the input and reconstruction.
In this work, we are concerned with answering the question

whether we can automatically detect abnormalities (out-
liers) in ECG data in an unsupervised way.

Previously, authors used machine leaning methods to
classify ECG rhythms and beats into healthy or not or into
more classes using probabilistic and deep learning mod-
els such as convolutional neural networks, adversarial au-
toencoders and improved AnoGANs. The works of [3]
and [4] were unsupervised methods trained on normative
data to detect abnormal beats while that of [5] was a super-
vised learning method which had the normal and abnormal
data as well as the labels for training to classify abnormal
rhythms. This work contribution is in using unsupervised
learning methods and more specifically probabilistic mod-
els for abnormal rhythm detection to contribute to the Phy-
sionet challenge 2020 [6].

2. Methods

2.1. Autoencoders (AEs)

AEs map an input signal to a, usually, lower dimensional
latent representation with the encoder part, and then recon-
struct the input signal from that representation through the
decoder part with the intention that the output is as much
close to the input as possible. The lower dimensionality is
deliberately creating a bottleneck, so that the network has
to compress crucial information about the signal in that
representation that allows reconstructing the signal from
it back [7]. We trained an AE with the normative data
and detected abnormalities by reconstruction error, assum-
ing data falling out of training distribution would incur a
large reconstruction error as these reconstructions would
be shifted more toward the normal data and thus will have
a higher difference between input and output.

2.2. Variational autoencoders (VAEs)

VAEs have a similar architecture to AEs, however, the
latent space vector is sampled stochastically from the la-
tent distribution [8] and thereafter the decoder reconstructs



the output. The encoder part, encodes the input data into
a lower dimensional latent space until it outputs a set
of means and variances. Different than AEs, VAEs op-
timize the evidence lower-bound to the data likelihood,
which consists of a reconstruction term, as AEs, and a
KL-divergence term; together these terms allow VAEs to
approximate high-dimensional distributions. Like the AE,
we trained a VAE using normative data and detected abnor-
malities through the reconstruction error as the outlier data
was reconstructed more toward the normative data and had
higher error values.

Figure 1. The structure of an autoencoder [9]

2.3. Diffusion models (DMs)

DMs are a type of generative models using neural net-
works. They are split into two parts, the former adds
noise to the image and the later tries to denoise the image
back to the original input through approximating the high-
dimensional data distribution through this process [10].
The first process is called forward diffusion while the latter
is referred to as reverse diffusion process. Both parts are
successive steps of nosing or denoising thus DMs could
be seen as a chain, however, both parts could be made
through a single computation. We trained this model also
with normative data. Samples were first fed to the forward
diffusion process and reconstructed with the reverse one.
Reconstruction error is computed between the original and
the reconstructed where higher scores mean an anomaly as
it is not reconstructed as good as the normal data.

Figure 2. The process of a diffusion model [11]

2.4. Normalizing flow models (NFs)

NFs are a subset of machine learning that uses the
change of variable principle to change the input into some
other distribution. The functions used are invertible and
have easily computable Jacobean matrices [12]. This al-
lows maximizing directly the log-likelihood of data sam-
ples without relying on approximations or lower bounds.
This method was trained on normative data and classified
anomalies in their algorithmic high loss value of the pre-
dictions as it is assumed the algorithm would behave worse
for data whose distribution was unknown to it.

2.5. Partial shift variational autoencoder

Our model, called PSVAE, takes part of the original sig-
nal as the input instead of the complete signal, contrary to
normal VAE, and predicts the complete signal back from
the latent representation drawn from the part and an oper-
ator that specifies where the signal was cut. Like the VAE,
the sampling of the data point after the down-sampling and
reaching the latent space is done as shown in the follow-
ing equation with µ as the means and Var as the variance:
Z = µ + noise ∗ Var. This method classified the signals
in the same way as the AE and the VAE.

2.6. Gaussian mixture models (GMMs)

GMMs assume a function, or a distribution is mixture of
Gaussian distributions, each has its own mean and variance
parameters, in addition to that, each Gaussian distribution
is weighted by factor such that the sum of all factors is
equal too 1 as shown if the equation below [13].

X =
∑

wk ×N (µ, σ∈) .∑
wk = 1

Same as the normalizing flow method, this model was
trained on normal data and classified abnormalities in their
higher algorithmic loss values as the abnormal distribution
was unkown to the algorithm.

2.7. Data

2.7.1. PTB-XL dataset

The PTB-XL dataset is a large publicly available ECG
dataset [14]. This resource contains 21799 12-Lead ECG
recording of 18869 patients of different categories and
9517 healthy volunteers as shown in Table 1.

2.7.2. CPSC 2018 dataset

China physiological signal challenge (CPSC) 2018 is
China’s first physiological signal challenge [15]. It is a



Table 1. PTB-XL category table
Number of
records

Description

9517 Normal ECG
5473 Myocardial infarction
5237 ST/T change
4901 Conduction disturbance
2649 Hypertrophy

publicly available dataset containing 12 lead ECG signals
of different types and number of recordings as shown in
table 2.

Table 2. CPSC 2018 category table
Number of
records

Description

918 Normal ECG
1098 Atrial fibrillation
704 First-degree atrioventricular block
207 Left bundle branch block
1695 Right bundle branch block
556 Premature atrial contraction
672 Premature ventricular contraction
825 ST-segment depression
202 ST-segment elevated

2.7.3. Training test split

The training data for all models other than the GMM
was 5699 and 700 samples and the testing data was 13901
and 1083 for the PTB-XL and CPSC datasets respectively.
For the GMM the training data was 700 and 218, and the
testing data was 2000 and 1365 for the PTB-XL and CPSC
datasets respectively as it did worse for larger amounts of
data. The data was split based on index, where points
whose number was higher than the index were test and for
lower ones it was for training.

3. Results

The following two tables show the AUC score of the
five different methods for the PTB-XL (first table) and
CPSC 2018 (second table) datasets. The tables illustrate
the scores based on the reconstruction error that specifies if
a point is an outlier or not. The error measurement metrics
are the mean absolute error (MAE) and the mean squared
error (MSE) of the true and output sample, furthermore the
algorithmic loss is used for the NF and GMM models. The
VAE achieved the best results with AUC scores of 0.88
and 0.84 with the best detection metrics on the PTB-XL
and CPSC 2018 datasets, while the overall worst perfor-

mance was that of the GMM with AUC of 0.69 and 0.70.
The other four models lied in between.

Table 3. AUC Table - PTB-XL dataset
Model AUC

MAE
AUC
MSE

AUC
Loss

Autoencoder 0.72 – –
VAE 0.84 0.88 –
Diffusion model 0.74 0.76 –
Normalizing flow – – 0.73
PSVAE 0.73 0.80 –
GMM – – 0.70

Table 4. AUC Table - CPSC 2018 dataset
Model AUC

MAE
AUC
MSE

AUC
Loss

Autoencoder 0.76 – –
VAE 0.83 0.65 –
Diffusion model 0.65 0.63 –
Normalizing flow – – 0.71
PSVAE 0.74 0.62 –
GMM – – 0.69

As the VAE achieved the best results, we further ana-
lyzed it’s detection performance per abnormality type in
the PTB-XL data set. Results are shown in Table 5. The
VAE achieved a 0.89 AUC score for conduction distur-
bance with the MAE as the highest score, while the lowest
score was 0.54 for hypertrophy with MSE.

Table 5. AUC table VAE PTB-XL different categories
Abnormal Class AUC

MAE
AUC
MSE

Abnormal - mixed 0.85 0.83
Conduction disturbance 0.89 0.85
Hypertrophy 0.60 0.54
Myocardial infarction 0.80 0.77
ST/T change 0.79 0.81

4. Discussion

Unsupervised learning introduces the opportunity to
classify anomalous and normal ECG signals from each
other with only training on normative data. Comparing the
autoencoder models visually, the VAE produced the best
reconstruction results, i.e. its outputs are the most similar
to its input (not shown here). Autoencoders with the diffu-
sion model is not an apple to apple comparison, however
we note that the diffusion model produced the best recon-
structions.

Related work can be split majorly into two parts: super-
vised which different from our work in having the labels



for training and unsupervised is that like our model does
not need labels for training.

The work we can fully compare our AUC with to our
knowledge is that of Smigiel et al. [5]. The AUC score
of the best model in [5] is 0.96 for the binary classifier
while our best model achieved 0.88 AUC on the same pub-
licly available dataset (PTB-XL dataset). It is to be noted
however that their model is a supervised learning method,
which has more data to train on (the labels) and thus should
produce better results.

Another work to be noted is the work of Shan et al. [3]
which did beat classification into normal or abnormal cat-
egories. Their work achieved AUC scores of 0.96 and 0.93
on the MIT-BIH and CMUH datasets. This is higher than
our 0.83 to 0.88 AUC score and that of Shin et al. [4] that
achieve an AUC OF 0.94 which is also a beat classification
problem.

Our work implies that unsupervised learning methods
can be trained to differentiate between normal and out-
lier ECG data in a good to excellent way as it achieving
an AUC of over 0.80 and even more for some specific
categories like conduction disturbance with AUC of 0.89.
Applications for our research and models are medical and
non-medical (like using devices with built in ECG sensors)
classification of ECG signals.

Our works limitations are: (i) small sample sizes used
for training and validation, (ii) using raw signals instead
of pre-processed signals, and (iii) the models are not fine-
tuned in terms of hyper-parameters.

5. Conclusion

The study has shown that the models and especially the
best performing model the VAE with an AUC of 0.85 on
the publicly available PTB-XL dataset and 0.88 on the
publicly available CPSC dataset could distinguish between
normal ECG data and outliers (abnormal data). Further-
more, the VAE has high classification performance for
conduction disturbance, myocardial infarction and ST/T
change with an AUC of 0.89, 0.80 and 0.81 respectively.
While this performance is not enough for use in medical
applications, future work could build on our work and en-
hance it, more specifically, future research could try new
methods to score the difference between input and recon-
struction, fine-tune the models and expand them, use dif-
ferent prepossessing methods and try the models on new
datasets.
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