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Abstract 

Cardiac arrest affects between 1% to 10% of the world 

based on geographical area. Most resuscitated cardiac 

arrest patients are comatose and often die due to severe 

brain injury. With the uncertainty of which patient will 

survive or not, it is important for the right prognosis to be 

given on which patient would benefit from life support. 

This would help decide which patients intensive care 

should be focused on. 

Years of research has presented patterns of 

neurological activity of comatose patients that are 

commonly used for making prognosis. Machine learning, 

which is a revolutionary computer program that can work 

without explicit instructions, could be used to study these 

patterns, and make better prognosis. 

Our team, Leicester Fox, focused on the comparison of 

the effectiveness of shallow and deep learning machine 

learning models in giving the right prognosis on chances 

of survival of cardiac arrest comatose patients. Features 

extracted from the electroencephalography (EEG) of 607 

patients are used for this analysis. Three groups of 

features (18 features) were extracted including the patient 

information, category, and complexity of EEG signals. 

The results showed that the shallow model worked 

better in the prognosis using feature-based analysis. The 

shallow model had an accuracy of 76% and a challenge 

score of 51% while the deep learning model had an 

accuracy of 65%. 

In conclusion, when dealing with smaller number of 

patients and using features for analysis, shallow 

classifiers would usually give a better result. 

 

1. Introduction 

Cardiac arrest is a very common phenomenon with a 

survival rate between 1% and 10% based on geographic 

location [1, 2]. Most cardiac arrest patients who survive 

resuscitation are comatose and often die due to severe 

brain injury [3]. With the uncertainty of survival of 

comatose patients despite continued care, physicians are 

often asked to give a prognosis (a probability that the 

patient will eventually recover). The prognosis could be 

good or poor resulting in continued care of the patient, as 

poor prognosis usually leads to removal of life support of 

the patient, respectively. 

False positives (where poor prognosis is given but the 

patient still recovers) are not rare and poses an issue to 

the medical sector. It is paramount that false positives are 

reduced to the barest minimum so that patients who 

would actually survive would not be removed from life 

support. To eliminate the human subjectivity of 

prognosis, a method comprised of an automated system 

needs to be built. 

Electroencephalogram (EEG) is the measurement of 

the electrical activity of different parts of the brain [4]. 

EEGs are commonly used to monitor the neurological 

activity of comatose patients. Years of research has 

presented patterns in brain signals which have proven 

useful in prognosis [5]. These patterns, coupled with 

clinical data and patient outcomes can be used to design a 

machine learning (ML) model to give little to no false 

positives with a high degree of accuracy. 

Machine Learning is the development of a computer 

system that can learn without explicit instructions [6]. 

This comes in handy in systems where humans have been 

unable to recognize substantial patterns that are enough to 

make a practical system. In the design of a system 

capable of proffering a prognosis, multiple models need 

to be tested to be able to conclude on a reliable model.  

This work focuses on the design, modelling and 

analysis of two machine learning algorithms to proffer 

reliable prognosis of the eventual recovery of comatose 

patients resulting from cardiac arrest. 



2.   Methodology 

2.1. Dataset 
The data used is obtained from the International 

Cardiac Arrest Research consortium (I-CARE). I-CARE 

is a database of comatose patients with, at most, 72 hours 

of 18-channel EEG recordings, ECG recordings, clinical 

data, and recovery status of each patient [7, 8]. The 

database includes seven hospitals from the United States 

and Europe. The database consists of 1020 adult patients, 

but this study was done on only approximately 60% 

(which was what was made available at the time of this 

study). 

 

2.2. Shallow Classifier 
Three groups of features (patient information, 

complexity, and category features) were extracted from 

the dataset. 

1. A set of eight patient-related features were gathered 

for each individual, with these features encompassing 

data such as age and gender at admission, a hospital 

identification code, the context of the cardiac event 

(whether it occurred outside or within the hospital), 

the specific cardiac rhythm observed during 

resuscitation (including shockable rhythms like 

ventricular fibrillation or ventricular tachycardia, as 

well as non-shockable rhythms like asystole and 

pulseless electrical activity), and the duration between 

the cardiac arrest and the restoration of spontaneous 

circulation (ROSC). 

2. The category features and complexity features are 

described in table 1. Category features quantify the 

degree of the brain states, while the complexity 

features quantify the degree of irregularity, 

randomness and the chaotic in the EEG signals. These 

two feature classes likely to carry some prognostic 

significant to classify the EEG signals for predicting 

the cardiac arrest recovery after the coma. 

  

Table 1. Details and description of category and 

complexity features. 

Groups Features 

(parameters) 

Descriptions 

category Delta PSD (δ band 
Power) [9] 

0.5-4Hz power spectral 
range 

Theta PSD (Ө band 

power) [9] 

4-7Hz power spectral 

range  

Alpha PSD (α band 

power) [9] 

8-12Hz power spectral 

range 

Beta PSD (β band 
power) [9] 

13-30Hz power 
spectral range 

Median Frequency 

[10] 

The median spectral 

frequency of a signal 

complexity Hjorth parameters 

(Mobility) [11] 

Mean frequency 

Hjorth parameters 

(Complexity) [11] 

Variation of frequency 

Shannon entropy 
[12] 

Additive measure of 
signal stochasticity 

Higuchi fractal 

dimension [13] 

Investigate the brain 

responses for the 

important audio 
information in patients’ 

brain injury. 

 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =  √
𝑣𝑎𝑟(𝑥′(𝑡))

𝑣𝑎𝑟(𝑥(𝑡))
  …………… (1) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  
𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥′(𝑡))

𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥(𝑡))
 ………….… (2) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝𝑖

𝑖

log 𝑝𝑖  …………… (3) 

𝑃𝑆𝐷 =  |𝑋(𝑓)|2 ………… … (4) 

where: 𝑣𝑎𝑟(𝑥(𝑡)) is the variance for the input signal 𝑥(𝑡) 

and 𝑝𝑖  is the probability that the system is in the 𝑖 𝑡ℎ state, 

|𝑋(𝑓)| is the magnitude for the frequency (𝑓). 

Patient information features were extracted from the 

information file for each patient. Category and 

complexity features were extracted from 72hrs EEG 

recording files for a signal duration of 5 minutes from 

each channel. The mean process was done for all channels 

in the 72 hrs recording file. TreeBagger classifier was 

used to train and test the model. Five-fold cross validation 

technique was applied to measure the performance of 

classifier. 80% of the dataset was used as train set and 

20% as a test set. Figure 1 shows the complete diagram 

for training and testing the shallow and deep learning 

models. 

 

Figure 1: Complete diagram for the proposed method 

2.3. Deep Learning Model  
The deep neural network (DNN) model was trained using 

the same features as the shallow model. Typically, the 

DNN is trained using raw data with model containing 

multiple layers to optimize the performance [14]. 

However, training the model usually requires a large 

amount of data. When a large dataset is used, a deeper 

model is mainly needed for optimal results. Thus, the data 



acquisition can be demanding, and computational 

requirements increase. Furthermore, the data might 

require pre-processing concerning the perturbation 

(denoising), which can increase even more the 

computational requirements. Features can potentially add 

robustness and provide the use of a compressed deep 

learning model. We used convolutional neural network 

(CNN) combined with attention mechanism. 

     The CNN forms an automated feature in the 

training process [14]. Each layer uses filters to construct 

feature maps. And the attention mechanism makes the 

model focus more on a specific part of the data [15]. The 

model is presented in Figure 2.  

 

Figure 2. The deep learning model used for classification 

of categories good and poor. The model for CPC was 

formed by changing FC(2) to FC(1) and removing 

SoftMax layer.  

CONV(f,m) = Convolutional layer (filter size, feature 

maps)   

FC = Fully connected layer(neurons). 

3. Results 

Two proposed methods were used for predicting 

neurological recovery after cardiac arrest from coma. The 

first approach was based on using shallow classifier and 

in particular the treebagger algorithm, and another was 

dependent on deep learning model. Table 2 shows the 

scores and the accuracy for the proposed approaches. A 

higher performance can be obtained from the shallow 

classifier compared to the deep-learning model. Figure 3 

shows the confusion matrix for the shallow and deep-

learning models. 

 

Table 2. Result using publicly available database. 

Table 2 shows the results achieved by testing the 

shallow model and the CNN model on the publicly 

available dataset.  

The challenge score, as described by Physionet [8], is 

the specificity (True Positive Rate) at a False Positive 

Rate (FPR) of less than 0.05. Mathematically written as, 

𝑇𝑃𝑅 =
𝑇𝑃

𝐹𝑃 + 𝐹𝑁
 

 

𝑤ℎ𝑒𝑟𝑒 𝐹𝑃𝑅 ≤ 0.05 

The accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑤ℎ𝑒𝑟𝑒: 
𝑇𝑃𝑅 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 

𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑁 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

 
Figure 3: Confusion matrix of the shallow (A) and 

deep (B) model 

 
Figure 4: Feature Importance 

4. Discussions 

The CNN attention model is less accurate than the 

shallow model, which may be due to the small amount 

used for training. Both models have a low challenge score 

and FPR (as defined by the conditions challenge score. 

The accuracy is good, but a low challenge score means 

MODEL CHALLENG

E SCORE 

5-FOLD 

CROSS 

ACCURACY 

Negati

ve Class 

Accuracy 

CNN-

attention 

0.33 (Local 

Score) 

0.65 0.70 

Shallow 

model 

0.51 

(Physionet 

Score) 

0.75 0.74 



there would still be a noticeable chance of poor prognosis 

for the wrong patient. This would counter the main aim of 

this work. 

These results, nevertheless, are promising as they show 

that shallow models can be very useful in giving a 

prognosis for the recovery of a comatose patients. One of 

the drawbacks to these models could be that the features 

were extracted from only the first 5 minutes of the last 

recording of the patients. There could have been better 

results if a small section of each hour was used. This 

would require more computing power. 

The deep learning model result may improve if more 

data were used for training. Therefore, when using a 

small amount of data, additional data augmentation is 

preferred. For example, a synthetic data generator would 

be a suitable solution. Furthermore, the dataset was not 

balanced, which affected the training. But the feature-

based inputs for the deep learning model is an interesting 

choice to consider. 

It is important to note the information obtained from 

the feature importance algorithm. Chi squared algorithm 

was used to plot the feature importance in predicting a 

recovery prognosis. It was found that ventricular 

fibrillation and age played the most important role in 

determining a good and poor prognosis. This finding 

rendered the other features used in this study close to 

inconsequential for a feature-based prediction. 

5. Conclusion 

This work proposed two approaches to predict 

neurological recovery after coma due to cardiac arrest. 

Shallow model and deep learning models were trained 

using the same features. The higher performance was 

obtained from shallow model as compared to deep 

learning model with a score of 0.51 and 0.33; 5-fold cross 

validation accuracy of 0.75 and 0.65; and negative class 

accuracy of 0.74 and 0.70, respectively. The two most 

important features for the training, as seen from the chi 

square algorithm, are ventricular rate and age. 

Further work into a feature-based approach, for coma 

recovery prognosis, should recognise that ventricular rate 

and age play a vital role in the prediction while EEG 

categorical and complexity features are inconsequential. 
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