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Abstract 

Acute Respiratory Distress Syndrome (ARDS) is a 

severe respiratory disorder characterized by the failure of 

the lungs and often associated with elevated death rates. 

Providing an accurate clinical prognosis for ARDS 

patients is complex due to the myriad clinical variables 

involved. In this study, we introduce an Explainable AI 

Predictor designed to improve the accuracy of prognostic 

predictions for ARDS. -This work outlines a solution to the 

challenge of short-term ARDS diagnosis, utilizing an 

algorithm that leverages a multi-feature fusion approach 

based on XGBoost learning and Optuna. The proposed 

algorithm enables ARDS status prediction within a critical 

48-hour window, which is vitally important for life-saving 

interventions in clinical settings. Furthermore, -- the 

proposed algorithm incorporates features that enhance 

interpretability, assisting medical professionals in 

diagnosis and treatment planning. Experimental results 

substantiate the efficacy of our proposed method, with the 

algorithm achieving an overall micro-AUC of 0.832 when 

applied to the test set. This performance metric 

underscores the accuracy and predictive strength of our 

approach. The encouraging results emphasize the 

algorithm's potential to facilitate healthcare professionals 

in making timely and precise decisions in managing ARDS. 

 

1. Introduction 

Acute Respiratory Distress Syndrome (ARDS) is a life-

threatening condition characterized by severe respiratory 

failure and widespread lung inflammation. It is a complex 

syndrome with diverse causes, including pneumonia, 

sepsis, and trauma, and is associated with high morbidity 

and mortality rates [1]. Due to its severe consequences, 

morbidity, mortality, and medical costs, ARDS has been a 

significant focus in clinical and basic research within 

critical care medicine. Traditional prevention and control 

methods typically rely on a combination of manual 

judgment and scoring systems, such as Apache IV. 

However, these methods do not adequately address the 

urgent need for early detection of ARDS to facilitate 

effective treatment. 

With the increasing availability of publicly accessible 

electronic health records (EHRs), there are now 

tremendous opportunities to develop data-driven and 

efficient machine-learning models to diagnose disease. 

Therefore, in recent years, researchers have proposed 

various rule-based machine learning or deep learning 

models to achieve the goal of early prediction of ARDS 

using physiological data [2-4]. Zhang [5] identified  binary 

classification for ARDS patients. The best-performing 

machine learning algorithm had an AUC of 0.84. 

Furthermore, according to Sidney Le BA [6], models 

predicting ARDS incidence and severity using continuous 

noninvasive parameters reached peak performance with 

AUC values of 0.79, using 9909 patients in 48 window 

cohorts. However, there are few studies on short-term 

survival prediction for confirmed ARDS patients. In 

addition, direct comparisons between these methods are 

challenging due to differences in clinical criteria, available 

patient variables, predictive tasks, evaluation metrics, and 

other factors. Model interpretation is also the key to current 

machine learning models. 

To address this gap, we present an explainable 

algorithm that utilizes multi-feature fusion based on 

XGBoost [7] learning and the Optuna framework [8], to 

predict the status of ARDS patients (quick death, recovery, 

and long stay) within 48 hours after the clinical definition 

of ARDS. This method has the potential to provide timely 

early warning signals for patients with ARDS and can 

assist clinicians in making accurate diagnoses at critical 

moments. The proposed algorithm may herald a new step 

forward in the field, potentially improving the practical 

application of machine learning in clinical settings. 

 

2. Methodology 

2.1. Data source and cohort extraction  



Data used were sourced from the Medical Information 

Mart for Intensive Care (MIMIC-IV) database (version 2.0) 

[9]. The Berlin criteria [10] were employed to identify 

ARDS patients with a PaO2/FiO2 ratio (P/F) ≤ 300 mm 

Hg and PEEP ≥ 5 cmH2O for at least 24 hours. Due to the 

limited number of patients with available imaging data, our 

analysis did not include images. Patients with congestive 

heart failure were excluded based on ICD codes. All 

patients with ARDS required mechanical ventilation in the 

ICU. Both diagnosis and monitoring time were 

documented for each patient, with the diagnosed time 

being the latest of the patient's initial PEEP time and P/F 

ratio time in the MIMIC-IV database. Only the first ICU 

stay of each patient was considered. According to the study 

practice, monitoring was initiated 24 hours after the ARDS 

diagnosis. ARDS patients were classified into three 

categories based on their outcomes: "death" for those who 

passed away within 24 hours of monitoring (48 hours after 

ARDS was diagnosed), "recovery" for patients who fully 

recovered from ARDS within 24 hours post-monitoring, 

and (longer-term) "stay" for patients who continued to 

have ARDS beyond 24 hours after monitoring. 

The MIMIC-IV database recorded 50,920 patients' 

information, after defining 4337 ICU patients who have 

ARDS, as shown in Figure 1. 

Figure 1. MIMIC- IV dataset screening process 

 

This research processes the unrefined data through the 

subsequent two stages. 

 (1) Remove the continuous variates whose missing 

values account for more than 80%.  

(2) Impute missing data with the cosine similarity and 

median strategy. We use the following formula (1) to 

calculate the cosine similarity:  
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A and B represent different times of the same variables 

of the same patients. Ai and Bi represent the components of 

vectors A and B respectively. 

Variables for which cosine similarity cannot be calculated 

are filled with the median. 

2.2. Feature extraction 

According to clinically relevant studies [2, 11, 12], this 

study performed data preprocessing and feature selection. 

After Manny-Whitney U test, we incorporated 21 features 

into the final model, including static variables and 

continuous variables, including Acute Physiology Score III 

(APS III score), pH, PaO2 (mm Hg), PaCO2 (mm Hg), 

Blood Urea Nitrogen (mg/dL), Non-Invasive SBP (mm 

Hg), Non-Invasive MBP (mm Hg), Non-Invasive DBP 

(mm Hg), Base excess (mmol/L), SBP (mm Hg), MBP 

(mm Hg), DBP (mm Hg), Respiratory rate (breaths/min), 

PEEP, PaO2 (%), FiO2 (%), Non-calcium (mg/dL), 

Bicarbonate (mmol/L), GCS verbal, GCS motor, GCS eyes. 

The continuous variables were employed in three 

summarization methods:  

(1) Mean is represented by the average value.  

(2) Variance is computed when multiple data sets were 

available for the same patient at the same stage, to capture 

variability.  

(3) Rate of change is calculated when there were 

multiple data sets, indicating the speed or magnitude of 

change over time.  

 

2.3. Classification 

2.3.1 Model training 

Due to the unbalanced sample size across categories, 

The MIMIC-IV database was divided into a training set 

(80%) and an internal test set (20%) using stratified 

sampling, in a random manner. 

The framework of the proposed algorithm for the 

prognosis prediction of ARDS is shown in Figure 2. 

Figure 2. The framework of the proposed algorithm 



Raw patient data is analyzed first for helping us to get 

more effective information in feature extraction. Then the 

processed data is divided into a train set and a test set. After 

that, the XGBoost classifier receives training data after 

feature extraction as inputs and tunes the hyperparameter 

automatically using an Optuna optimizer. Meanwhile, the 

5-fold cross-validation method is used to verify the 

stability of this work and finally uses soft voting [13] 

strategy exports an ensemble model for comparison.  

 

2.3.2 Model evaluation 

The overall discriminative ability of the models is 

compared by using the area under the curve (Micro-AUC 

[14]), and the optimal model is selected based on the 

highest micro-AUC value, which was calculated as follow 

formula (2). The classification and prediction 

performances of each model were compared using ACC to 

determine their effectiveness in identifying positive 

instances, which was calculated as follow formula (3). In 

the formula (2) and (3), n is the number of categories, in 

this study was divided into 3 categories: recovery, death, 

and stay, where TP, TN, FP, and FN represent the numbers 

of true positives, true negatives, false positives, and false 

negatives, respectively. 
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2.3.3 Model explanation 

SHAP [15], a widely recognized technique in the field 

of Explainable Artificial Intelligence (XAI), holds a 

prominent position for elucidating model behaviour. This 

method is particularly invaluable in medical contexts 

where algorithmic expertise may be lacking, enabling 

medical practitioners to seamlessly grasp the intricacies of 

model operations. Using the SHAP interpreter, we 

conducted a careful factor analysis of the model, further 

substantiating our investigative approach. 

 

3. Results and Discussions 

3.1. Data analysis and pre-processing 

Statistical analysis was performed based on the ARDS 

patients in the MIMIC-IV database. Table 1 shows the 

number of ICU and hospital survivors in each category. 

The hospital mortality rate for ICU patients diagnosed with 

severe ARDS was 38.78%, with an overall ICU mortality 

rate of 26.52% and a hospital mortality rate of 32.60%. The 

median length of stay in the ICU was 9.66 days, and the 

median duration of ARDS in the cohort was 26.00 hours. 

The data show clear trends: approximately 5% of all cases 

resulted in death, while 48.99% were associated with 

hospitalization and 45.74% indicated recovery. Those who 

recovered or required hospitalization had less severe 

symptoms. Conversely, death was correlated with greater 

disease severity. In addition, the population requiring 

hospitalization tended to have severe ARDS, while those 

who recovered had milder symptoms. 

 

Table 1. Statistical analysis of the MIMIC-IV database 

 

ARDS patients Recovery Death Stay 

ICU non-survival 289 234 629 

ICU survival 1686 3 1496 

Hospital non-survival 435 237 751 

Hospital survival 1540 0 1374 

 

3.2. Model results 

A side-by-side comparison of the five individual 

XGBoost models trained with 5-fold cross-validation and 

the ensemble model was performed to assess their 

performance. The results are presented in Table 2, with the 

ACC and micro-AUC. It was found that there is no 

significant difference between the results obtained by the 

individual models, indicating the stability of our algorithm. 

Moreover, it can be observed that the ensemble model 

achieved the highest ACC and micro-AUC simultaneously. 

This outcome confirms that employing an ensemble 

approach leads to improved predictions compared to using 

a single model. 

 

Table 2. Performance of different models on the test set. 

 

Model  Micro-AUC ACC 

Individual 

XGBoost 

Model 

1 0.807 0.635 

2 0.807 0.612 

3 0.815 0.628 

4 0.824 0.654 

5 0.827 0.657 

Ensemble model 0.832 0.692 

 

The SHAP interpretation analysis was conducted on the 

optimal model, revealing that the overall impact of the 

model on the short-term prognosis of the three states was 

summarized. As shown in Figure 3, notably, the APS III 

score was found to have the greatest influence among the 

factors examined in three statuses, and GCS eyes, SBP, 

SpO2, and the rate change of temperature also have a 

significant difference in the model that allows the model to 

make classification predictions. The inherent explanatory 

nature of the model serves to elucidate, in juxtaposition, 

the unique attributes inherent to ARDS pathology, while 

simultaneously explaining the discernible substantial 



disparities in transient physiological fluctuations observed 

among individuals afflicted with ARDS. 

Figure 3. Model explanation of three diagnosis status 

In Figure 3, ‘AVG’ represents the mean value of the 

variables, ‘VAR’ represents the variance of the variables, 

and ‘RC’ represents the rate of change of the variables. 

 

4. Conclusion 

This paper presents a solution to the challenge of 

predicting a short-term diagnosis of ARDS, which 

proposed an algorithm that leverages multi-feature fusion 

based XGBoost learning and Optuna. The algorithm 

enables the status prediction of ARDS within a crucial 48-

hour window, which is of paramount importance in clinical 

settings for life-saving interventions. Moreover, the model 

incorporates interpretability features to assist in clinical 

diagnosis and treatment. The results of our experiments 

demonstrate the efficacy of the proposed method. When 

applied to the test set, the algorithm achieves an overall 

micro-AUC of 0.832. This performance metric indicates 

the accuracy and predictive power of our approach in 

identifying. The promising results highlight the potential 

of our algorithm to aid healthcare professionals in timely 

and accurate decision-making for ARDS management. 
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