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Abstract 

A major challenge in BCG measurements is their high 

sensitivity to motion artifacts, which degrade the signal 

quality. Several techniques have been developed, 

especially for BCG measurements during sleep, to 

automatically discard corrupted segments and the 

coverage factor is defined as the amount of artifact-free 

signal with respect to the entire recording. However, 

current approaches to obtain it are mainly based on the 

analysis of the raw signal, which may discard signal 

segments of acceptable quality that exhibit significant 

amplitude fluctuations due to factors such as respiratory 

rate or deviations from baseline. To overcome this 

drawback, a novel technique combining both the signal 

and its wavelet transform is proposed, which is 

compared to the more traditional technique based on the 

raw signal variance. Results obtained from the analysis 

of 18 recordings from the BCG Kansas public database 

show a 10% coverage factor increase in critical records, 

which may be particularly valuable for continuous 

monitoring applications. 

 

1. Introduction 

The ballistocardiogram (BCG) is a mechanical 

cardiac signal that consists of detecting the reaction 

movements of the body's center of gravity caused by the 

heart due to the ejection of blood through the vascular 

tree [1]. Compared to the electrocardiogram (ECG) or 

the photoplethysmogram (PPG), the BCG has the 

advantage that the necessary sensors (pressure, force, 

acceleration, displacement) do not require direct contact 

with the skin and can be integrated into everyday objects 

such as furniture or even clothing. However, since its 

inception [2], one of the problems of the BCG signal is 

its susceptibility to motion artifacts, unless the subject 

remains still and completely relaxed. These conditions 

are particularly difficult to achieve, especially when 

BCG is recorded outside clinical settings, where the goal 

is to make the measurement as noninvasive as possible 

or even unnoticed by the user, e.g., during sleep or while 

performing daily activities.  

 

Therefore, various techniques have been proposed to 

detect motion artifacts in BCG records, like the one by 

Wiard et al. [3], where they proposed including an 

additional sensor in a modified scale to detect excessive 

movements in standing subjects, which thereby 

increased the complexity of the designed circuit. Other 

techniques have focused on variance-based analysis of 

the BCG signal to identify segments with motion 

artifacts. In Boger et al [4], a moving variance window 

of 1-second was used, and a threshold of half the average 

of the moving window was proposed for BCG 

measurements during five real-world tasks: sitting still, 

watching a video on a computer screen, reading, using a 

computer, and having a conversation.  

On the other hand, Alivar et al. [5], [6] have used two 

distinct approaches: the first one uses a Neyman-Pearson 

detection test based on signal variance in the time 

domain, while the second approach relies on a sequential 

detection algorithm. However, the disadvantage of solely 

relying on variance analysis of the BCG signal is that in 

records with amplitude modulations or baseline drifts, 

good quality segments might be excluded. Additionally, 

the use of artificial intelligence models for the 

segmentation of BCG signals based on U-Net has been 

proposed [7], but this comes at the expense of increased 

computational complexity. 

In this study, to partly overcome some of the 

shortcomings of the previous approaches, we propose a 

method that combines both the analysis of the BCG 

signal and its Continuous Wavelet Transform (CWT) [8]. 

This is a time-spectral tool that provides information on 

the frequency components of interest, which can help to 

distinguish motion artifacts more robustly. We will 

examine its ability to automatically discard corrupted 

signal segments correctly and thus improve the so-called 

coverage factor, that is, the proportion of artifact-free 

signal in relation to the total. Finally, the performance of 

the new proposed method will be compared, using the 

same database, with a more traditional algorithm based 

solely on the variance analysis of the signal. 

2. Material and methods 

2.1  Dataset  



To validate the proposed method, we used the 

database acquired by Carlson et al. [9]. These 

measurements were obtained with a BCG measurement 

system implemented in a bed and consisting of four load 

cells placed under each leg and four EMFi sensors 

distributed centrally at a sampling frequency of 1 kHz. 

The signals obtained from each sensor were visually 

examined, selecting, from the signals obtained by the 

EMFi sensor "Film 0", 18 records with a relevant amount 

of motion artifacts (Table 1). The bandwidth considered 

for the BCG was 0.3-24 Hz, and for the simultaneously 

acquired ECG (lead 3) was 0.5-40 Hz. 

Table 1. Cohort characteristics 

ID Age Height 

(cm) 

Weigh 

(kg) 

Gender 

X1005 19 153 48.3 F 

X1006 28 183.6 75.6 M 

X1007 27 197.8 87.1 M 

X1010 47 158.6 67.5 F 

X1012 27 177.8 110 M 

X1019 22 165 67.5 F 

X1020 22 178.8 73.4 M 

X1025 53 167.8 136 F 

X1026 18 147.6 56.4 F 

X1028 21 172.5 53.6 F 

X1035 20 172 82.1 F 

X1039 59 184.2 80.7 M 

X1040 24 161.1 68.5 F 

X1042 65 170.5 53.7 F 

X1043 60 161.4 102 F 

X1044 31 176.5 70.4 F 

X1046 22 164.6 88.8 F 

X1047 32 157 57.6 F 

 

 

2.2 Continuous Wavelet Transform 

The auxiliary processing tool used for the 

segmentation of BCG signals was the CWT [10], which 

is defined in eq 1. 

 

𝐶𝑊𝑇𝑥(𝑎, 𝑏) =  ∫ 𝑥(𝑡)𝜓∗ (
𝑡 − 𝑏

𝑎
) 𝑑𝑡 

∞

−∞

           (1)  

 

The Wavelet Transform (WT) involves a convolution 

integral between a signal x(t) and a wavelet function ψ(t), 

which contains two parameters: the translation 

parameter b and the scale parameter a. The Wavelet 

Transform acts similar to a bandpass filter, with its cutoff 

frequencies directly linked to the scale factor a. For this 

study, the scale 16 of “Gaus2” mother wavelet function 

was selected, as it has demonstrated good performance 

in BCG detection [8]. 

 

2.3 Approach proposed 

Two moving standard deviation windows of one second 

were used along the recordings: 

𝑊1(𝑖) = 𝜎(𝑆𝐵𝐶𝐺(𝑖: 𝑖 + 1000))            (2) 

𝑊2(𝑖) = 𝜎(𝐶𝑊𝑇𝐵𝐶𝐺(𝑖: 𝑖 + 1000))         (3) 

Where 𝑊1(𝑖) represents a moving window of 

standard deviation of the BCG signal (𝑆𝐵𝐶𝐺) and 𝑊2(𝑖) 

represents a moving window of standard deviation of its 

CWT (𝐶𝑊𝑇𝐵𝐶𝐺). If only the BCG amplitude window 

had been used, there would have been a potential risk of 

segmenting parts of the recording suitable for 

processing, especially when the signal is modulated by 

respiratory rate or presents baseline drift. To ensure a 

more robust signal for analysis, the mean of both 

windows was calculated (Eq 4).  

𝑊𝑠 = (𝑊1 + 𝑊2)/2                        (4) 

With it, two thresholds were defined to determine the 

exclusion of corrupted segments. The first threshold 

aims to discard significant variations or signal saturation, 

while the second one is intended to segment weak signals 

or signal absence, respectively. 

Thd𝑚𝑎𝑥 =  𝒎𝒆𝒂𝒏(𝑊1 + 𝑊2)                 (5) 

Thd𝑚𝑖𝑛 =  𝒎𝒆𝒂𝒏(𝑊1 + 𝑊2) ∗ 0.1          (6) 
 

To assess the segmentation process, the coverage 

factor (CF) was calculated, defined as the ratio between 

the number of suitable heartbeats unaffected by motion 

artifacts and the total number of heartbeats in a 

recording, which can be obtained using a standard 

reference signal such as the ECG [11], [12]. In addition, 

a comparison was made between the segmentation using 

the method proposed and a more traditional approach 

based only on a variance window of the raw signal Wvar 

(eq. 7).  

𝑊𝑣𝑎𝑟(𝑖) = 𝜎2(𝑆𝐵𝐶𝐺(𝑖: 𝑖 + 1000))                (7) 

 

Once the analysis windows and thresholds were 

obtained, the complete records were evaluated using eq. 

8 to identify the areas with motion artifacts. The 

segmentation signal is carried out with a margin of ±150 

ms when the thresholds are exceeded. The same 

methodology was used for the Wvar window. 

𝑆𝑒𝑔(𝑖 − 150: 𝑖 + 150) = {

2,      𝑊𝑠 >  𝑇ℎ𝑑_𝑚𝑎𝑥 
 1,     𝑊𝑠 <  𝑇ℎ𝑑_𝑚𝑎𝑥   

      𝑊𝑠 >  𝑇ℎ𝑑_𝑚𝑖𝑛
0, 𝑊𝑠 < 𝑇ℎ𝑑𝑚𝑖𝑛

(8) 

Where 2, 1, and 0, are arbitrary values selected according 

to the criteria used to facilitate the visualization of the 

figures in the results section. 

3. Results and discussion 

Figure 1 shows an example of the two segmentation 

methods compared for the case of recording “X1039”, in 

which a significant baseline drift of the BCG signal can 

be observed, whereas the amplitude of the CWT exhibits 



no significant variations, effectively compensating for 

the BCG signal window. Moreover, Ws, never exceeds 

the maximum and minimum thresholds, rendering signal 

segmentation unnecessary when using the method based 

on the two standard deviation windows for both the BCG 

signal and its CWT (labeled as “SD(CWT+BCG)” in the 

figure 1 to Figure 4). On the other hand, the segmentation 

method based on the variance of the BCG signal (labeled 

as Var(BCG) Figure 1 to Figure 4) identifies  amplitude 

variations in the signal due to baseline drift as motion 

artifacts, potentially leading to the exclusion of high-

quality segments. 

 
 

Figure. 1. Record “X1039” with baseline drift. 

 

   The records "X1005" and "X1019" (Figure 2 and 

Figure 3) display motion artifacts that affect both the 

BCG signal and the CWT, and they can be detected using 

both approaches. In Figure 3, it can be observed that, in 

certain areas, both segmentation methods coincide, 

while in others, Var(BCG) segmentation excludes 

segments with slight amplitude variations. 

 

Figure. 2. Record “X1005” and the presence of motion 

artefacts. 

 
Figure. 3. Record “X1019” and the presence of motion 

artefacts. 

Figure 4 shows the absence of BCG and ECG signals 

in a long segment of the "X1042" record, attributed to 

bradycardia, causing Ws to fall below the minimum 

threshold, and signal segmentation. 

 

Figure. 4. Record "X1042" with absence of signal due 

to bradycardia. 

Finally, Table 2 shows the results of the CF using the 

two segmentation proposals for 18 records containing 

motion artifacts. The results show an increase in the 

coverage factor with the approach that uses CWT, 

meaning that fewer record segments are discarded, as the 

CWT acts similar to a bandpass filter and is not sensitive 

to low-frequency variations that can modulate 

amplitude. Additionally, it allows for the detection of 

high-frequency segments with low amplitude that can 

lead to false detections. Although this approach was 

validated in bed records, where the quantity of motion 

artifacts is lower, it has the potential to be applied to 

records obtained from wearable systems, where motion 

artifacts would be more prevalent. 

In addition to maximizing the quantity of valid 

recordings, quantifying artifacts in bed-based BCG 

records allows for the assessment of sleep quality [5], as 

they can provide valuable insights into sleep disruption, 

respiratory quality, and other important aspects of well-

being during rest. 



Table 2. The results of the coverage factor using the two 

methods analyzed for recordings of bed database. 

ID #Beats CF (%) 

Var (BCG) 

CF (%) 

SD(CWT+BG) 

Difference in 

beats 

X1005 566 98.94 99.65 4 

X1006 507 99.41 100.00 3 

'X1007 453 99.56 100.00 2 

X1010 541 97.41 99.82 13 

X1012 538 96.65 98.70 11 

X1019 406 90.39 94.58 17 

X1020 596 94.80 100.00 31 

X1025 645 86.82 100.00 85 

X1026 594 99.49 100.00 3 

X1028 469 97.23 100.00 13 

X1035 532 97.37 99.81 13 

X1039 408 95.83 100.00 17 

X1040 624 95.83 99.52 23 

X1042 527 97.91 98.48 3 

X1043 409 96.82 100.00 13 

X1044 495 99.60 100.00 2 

X1046 436 95.64 100.00 19 

X1047 551 98.00 99.64 9 

 

4. Conclusions 

The proposed approach proved to be robust against 

interferences that can modulate the amplitude of the 

BCG signal or introduce a drift in the baseline, while also 

correctly identifying motion artifacts. It was possible to 

increase the coverage factor compared to an approach 

based solely on the variance of the BCG signal, thanks 

to the use of the wavelet transform, a tool that, in 

addition to segmenting the signal, allows for robust BCG 

signal detection. This makes it particularly interesting for 

wearable BCG applications, where motion artifacts 

occur more frequently, and it is necessary to maximize 

the amount of information that can be extracted from 

such records. 
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