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Abstract 

Ventricular tachycardia (VT) is a life-threatening 

arrhythmia that is commonly treated by catheter ablation 

guided by substrate mapping. This procedure relies on the 

visual inspection of intracardiac electrograms (EGMs) by 

the cardiologist, to identify arrhythmogenic sites. This task 

is challenging due to the huge amount of data to interpret. 

To address this issue, we proposed a method for the 

discrimination between physiological and anomalous 

bipolar EGMs based on siamese neural networks (SNN), 

able to deal with small datasets, for the automatic labelling 

of the EGMs onto the electroanatomic map. 

On a balanced dataset of 1504 physiological and 

anomalous EGMs, from nine post-ischemic VT patients, we 

demonstrated that a SNN trained to distinguish between 

the two types of EGMs is able to achieve a high degree of 

specificity (91±3%) and sensitivity (93±3%). Potentially, 

the proposed approach could also be exploited to map the 

similarity of the EGMs, resulting in a novel 

electroanatomic map for the identification of areas of 

abnormal conduction.  

 

 

1. Introduction 

Ventricular tachycardia (VT) is a severe arrhythmia 

which can cause fainting, loss of consciousness and even 

sudden cardiac death. Different treatments for VT have 

been proposed, including drugs, implantable cardioverter 

defibrillators, and catheter ablation. The last option is 

increasingly adopted, because of the advantages with 

respect to the other two, such as the cost-efficacy ratio and 

the avoidance of long-term therapies [1]. 

However, the electroanatomic mapping (EAM) 

procedure, which is performed to identify arrhythmogenic 

areas with abnormal conduction, such as areas associated 

to fractionated and late potentials and/or local abnormal 

ventricular activities, is a time-consuming procedure. Its 

outcome depends on the expertise of the 

electrophysiologist, challenged by the huge amount of 

endocavitary electrograms (EGMs) to be reviewed for the 

identification of the anomalous ones (AVPs).  

Artificial-intelligence methods can be deployed to 

support faster and operator-independent signals 

interpretation, thus assisting the electrophysiologists 

during the EAM procedure. To this aim, different artificial 

intelligence approaches, based on both machine learning 

[2] and deep learning [3], have been proposed so far. In [3], 

transfer learning with the AlexNet convolutional neural 

network (CNN), previously trained on the ImageNet 

dataset [4], demonstrated a classification accuracy above 

90%. There, time-frequency representation by 

synchrosqueezed wavelet transform (SSWT) [5] was 

adopted for the creation of the input images.  

Siamese neural networks (SNNs) [6] have shown to be 

effective in various applications, including cardiac 

electrophysiology [7], in particular when a limited-size 

dataset is available. This is because SNNs perform 

comparisons between instances rather than direct 

classification, resulting in a significant increase in the 

number of training and testing examples from N to N × (N 

– 1) /2. In this work, we investigated for the first time the 

adoption of a SNN for the identification of AVPs in real 

bipolar EGMs. Moreover, we explored nonlinear similarity 

metrics derived from the Siamese model to create a novel 

EA map aiming at enhancing the presence of AVPs, and as 

such at identifying arrhythmogenic regions. 

 

2. Materials and methods 

2.1. Dataset 

All signals adopted in this work were recorded from 

nine patients with post-ischemic VT (78% male, age: 66 ± 

10 years, ejection fraction: 29% ± 6%) during left ventricle 

EAM procedures carried out at San Francesco Hospital in 

Nuoro, Italy, performed using CARTO®3 mapping system 

(Biosense Webster, Inc., Diamond Bar, California). 

The bipolar EGMs, sampled at 1 kHz and band-pass 

filtered between 16 and 500 Hz by the CARTO, were 

manually labelled by an expert electrophysiologist using a 

custom MATLAB graphical user interface [8]. A balanced 

dataset consisting of 1504 labelled instances, including 



752 physiological potentials and 752 AVPs, was used for 

this work. As previous findings [8] highlighted statistical 

differences in spectral components between physiological 

EGMs and AVPs, the input images for the SNN were 

created by computing three different time-frequency 

representations of each bipolar EGM, i.e., the continuous 

wavelet transform (CWT), the Hilbert-Huang transform 

(HHT) and the SSWT. For each signal, a window of 

interest of 500 ms around the reference annotation was 

considered, and then the three transformations were 

computed and stacked in a 250×250×3 matrix, resulting in 

a time resolution of 2 ms and a frequency resolution of 2 

Hz. This size corresponds to the input layer of the adopted 

architecture. A detailed representation of the input images 

is reported in Figure 1. 

 

2.2. Siamese network architecture 

In order to reduce the number of weights to be updated, 

we designed the SNN architecture adopting a simple 

subnetwork. The weights of the different layers were 

initialized by random sampling from a normal distribution 

with zero mean and standard deviation of 0.01. Each 

branch of the subnetwork was composed of an input layer 

(250×250×3), followed by a set of four stacks of three 

layers, i.e., a convolutional layer (10×10×64, 7×7×128, 

4×4×128 and 5×5×256) followed by a ReLu layer, and 

then by a Max Pool layer (4×4 with stride 4, 3×3 with stride 

3, and 2×2 with stride 2), except for the fourth block of the 

stack, where the last layer was replaced by a fully 

connected layer with 4096 hidden neurons. Finally, the 

difference between the subnetworks outcomes was used as 

input for the final fully connected layer. A detailed 

representation of the SNN is reported in Figure 2.  

 

2.3. Training settings 

A 10-fold cross-validation approach was adopted to 

partition the multi-patient dataset of 1504 instances, thus 

dividing it into 10 balanced folds using the stratified 

sampling option. In the cross-validation, each partition 

consisted of eight folds for training and the remaining two 

for validation and testing, respectively.  

Then, in order to accomplish the task of AVP 

identification, the network was trained to measure the 

similarity between two EGMs. To this aim, we assigned 

the label ‘1’ to the duplet belonging to the same class, ‘0’ 

otherwise. Indeed, each prediction of the SNN produced a 

normalized score, which measures the similarity between 

the two compared instances. Therefore, the SNN was 

tested by measuring the average similarity between each 

instance (i.e., EGM) of the test set and the entire set of 

reference images, including two class-related subsets, i.e., 

one of AVPs (50%) and one of physiological EGMs (50%). 

Remarkably, to ensure that the network was tested only on 

previously unseen data, the reference set was chosen 

identical to the test set but excluding at each time the 

testing instance. As such, each tested EGM was assigned 

to the class exhibiting the higher mean similarity. 

In this implementation, the binary cross-entropy was 

selected as loss function, while we used the stochastic 

gradient descent with momentum as training algorithm. 

The hyperparameters were set according to the typical 

values adopted in the field, i.e., learning rate equal to 

0.001, momentum equal to 0.8, and batch size of 30 

instances per iteration. To avoid overfitting, an early-stop 

condition was imposed during training, by evaluating the 

validation set every 50 training iterations, and stopping the 

 
 

Figure 1: In the top panel (a), different time and time-frequency representations of a physiological EGM are reported, 

while in the bottom panel (b) different representations of an AVP in time and time-frequency domains are shown. 



training after 30 iterations not decreasing the validation 

loss.  

 

2.4. Similarity maps 

After classification, the EGMs and the corresponding 

predicted labels were projected onto the EA map, in order 

to compare the model outcome with the ground truth 

provided by the electrophysiologist’s annotation. As such, 

a so-called classification map was obtained, using the 

voltage map or the local activation time (LAT) map 

provided by the CARTO as background.  

Then to better analyze only the presence of AVPs 

targeting areas of abnormal conduction, we hypothesized 

that the AVPs similarity score, previously used to perform 

the classification, could better highlight at a glance this 

information into the map. Therefore, a scattered interpolant 

was used, and the interpolation of similarity values over 

the map coordinates was performed. Remarkably, not all 

the points used to compute the CARTO map were included 

for the AVPs similarity map, since a subsampling was 

necessary to balance the two classes. Indeed, the regions 

with a distance greater than 8 mm has been hided in the 

map in order to limit approximate interpolation. The 

resulting map is called Similarity map hereinafter. Finally, 

in order to give an overview of the variability of the 

similarity score, we apply the same method previously 

described but reporting the standard deviation of the 

variability score. 

 

2.5. Performance evaluation 

We evaluated various quantitative indexes to assess the 

SNN performance, i.e., accuracy (Acc), sensitivity (TPR), 

specificity (TNR), precision (PPV), and F1 score. While 

computing such performance indexes, we considered 

AVPs as positive entries and physiological EGMs as 

negative entries, thus true positives (TP) counted for all 

EGMs that were correctly classified as AVPs, false 

positive (FP) for all EGMs incorrectly classified as AVPs, 

and true negative (TN) for all EGMs properly recognized 

as physiological.  

 

3. Results 

Table 1 presents the mean and standard deviation of the 

performance indexes deriving from the 10-fold cross-

validation. The results show high discrimination 

performance, above 91% for all the investigated metrics. 

Our results revealed a high efficacy of the proposed 

method in detecting AVPs, even if slightly worse than 

previous studies adopting a CNN on the same dataset [3]. 

The lack of pre-training was identified as plausible 

explanation of this mismatch, as well as the different input 

images to the network. However, by considering TPR in 

Table 1, the detection performance of AVPs was superior 

when using SNN with respect to AlexNet. Remarkably, 

this metric is of main importance when the aim is missing 

any arrhythmogenic site and, possibly, ablation target.  

In Figure 3 an example of classification and similarity 

maps are reported. Both classification maps and the 

similarity score with AVPs set showed strong coherence 

with the EA map provided by the CARTO. Notably, in 

average similarity map, a conduction pathway without 

AVPs is highlighted, which was not visible by LAT or 

voltage maps. Furthermore, as can be seen by low standard 

deviations of similarity values, the SNN seemed to be 

confident with its decisions. Therefore, the proposed map 

could be useful to pinpoint critical endocardial areas with 

and without AVPs during mapping and ablation 

procedures. 

 

4. Conclusion 

This work proposed the use of SNN for the automatic 

identification of physiological and anomalous bipolar 

EGMs in electrophysiological procedures of post-ischemic 

VT. The results are in line with previous studies exploiting 

deep learning for the same purpose, but with a higher 

number of TP, which is encouraging. Moreover, the 

previously adopted CNN, i.e., AlexNet, requires more than 

five times the number of parameters to be updated than the 

Figure 2: Pipeline for SNN-based AVPs automatic 

recognition approach proposed in this work, along with 

a detailed representation of the SNN architecture. 

Table 1. Mean (µ) and standard deviation (σ) for all 

metrics computed in the 10-fold cross-validation. 

 

 AlexNet SNN 

Metric µ±σ µ±σ 

Acc (%) 92.5±2.5 91.8±1.7 

TPR (%) 92.0±4.0 92.7±3.4 

TNR (%) 93.0±3.3 91.0±3.2 

PPV (%) 93.0±3.0 91.2±2.8 

F1 0.92±0.03 0.92±0.02 

 



SNN exploited in this work. 

Remarkably, we proposed a novel EAM based on the 

SNN similarity scores, and this map could be further 

studied to increase the associated information and evaluate 

its usefulness in the framework of EAM procedures.  
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Figure 3: In the left panel, two classification maps are reported with LAT and voltage background, as well as the legend 

for the tested sites compared to the ground truth provide by the electrophysiologist annotation; in the right panel, (b) the 

SNN the similarity maps based on average similarity (left) and on its standard deviation (right) are reported. As can be 

seen, in the average similarity map perspective, a conduction pathway without AVPs is highlighted w.r.t. standard LAT 

and voltage maps. 
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