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Abstract

Machine learning for automated heart auscultation of-
fers a scalable solution with the potential to broaden the
accessibility of vital healthcare services. While conven-
tional short-time Fourier transform-based audio repre-
sentations contain both amplitude and phase information
(which can be effectively encoded in the complex domain),
the vast majority of proposed methods, and deep learning
in general, only consider the magnitude for modelling, dis-
carding the phase information. In this work, we explore,
for the first time, the potential of complex-valued neural
networks (CVNNs) for heart sound classification, leverag-
ing all available input information to derive complex rep-
resentations from sound segments.

We showcase the effectiveness of complex-valued neu-
ral networks for sound analysis by directly comparing
them with real-valued counterparts of our employed neu-
ral architectures. On the patient-independent testing set of
the PhysioNet 2022 Challenge dataset, a complex-valued
treatment of two neural network architectures — includ-
ing HMS-Net, the winning model of PhysioNet 2022 —
leads to a consistent 1% absolute improvement in murmur
detection weighted accuracy compared to the real-valued
baseline. This highlights the benefits of using the complex
domain in deep learning for heart sound analysis.

1. Introduction
Heart auscultation, while cost-effective and broadly ac-

cessible, has limited accuracy due to its reliance on human
hearing. As a result, in clinical practice, newer diagnostic
tools that require less training are gaining prominence for
their comparable or superior precision. To retain the acces-
sibility of auscultation while eliminating the need for ex-
tensive auditory training, the research community has been
increasingly exploring the application of machine learning
techniques for audio-based diagnostics.

The field of automated cardiac auscultation has seen a
wide range of approaches, reflecting broader trends in the
machine learning domain. Initially, researchers focused on
signal processing methods, such as signal envelopes and

feature-engineering approaches [1]. Traditional machine
learning models and probabilistic models (such as hid-
den Markov models) emerged as the field matured [2, 3].
More recently, there has been a marked shift towards deep
learning-based methods [4], specifically focusing on im-
proving murmur detection accuracy.

The PhysioNet 2022 Challenge significantly contributed
to this area by releasing the largest heart sound dataset
to date [5]. This challenge invited the participants to de-
velop an algorithm for heart sound classification, focus-
ing specifically on murmur detection and outcome predic-
tion [6]. In our work, we concentrate on the murmur detec-
tion task, as early identification of murmurs can be crucial
for timely intervention and effective management of po-
tential heart conditions.

Humans perceive audio in the time domain. However,
the convention for signal processing and machine learn-
ing is to convert audio into the frequency domain. Since
the Discrete Fourier transform (DFT) is subject to Heisen-
berg’s uncertainty principle, the Short-time Fourier trans-
form (STFT) is frequently used to overcome this problem.
STFTs, as the name suggests, capture frequency ampli-
tudes over short windows, thus creating a two-dimensional
matrix. Since DFT is intrinsically complex, STFT inherits
this property. Spectrograms, derived from STFT by calcu-
lating the magnitude, are widely used due to their compat-
ibility with vision-based neural architectures.

Some of the recent research efforts focused on utilis-
ing spectrograms alongside deep learning to provide the
best performance seen to date [7, 8]. The winning entry
of the PhysioNet 2022 Challenge, HMS-Net, utilised real-
valued multiscale spectrograms in a hierarchical convolu-
tional network for effective murmur detection and identifi-
cation of poor-quality samples (i.e. unknown class) [9].

However, real and imaginary components of the DFT of
an audio signal are statistically dependent on each other,
which is not captured upon transforming STFT into a spec-
trogram. By using a model that is able to directly process
raw, complex-valued STFTs, we may be able to harness
all the available information. In a complex space, neurons
process data in two dimensions, which allows the network
to learn more nuanced relationships in the data. In addi-



tion, the added constraints of this approach may yield a
more consistent and stable performance.

While using complex-valued neurons in neural networks
has been around for a few decades [10], complex-valued
treatments of neural networks are rarely used. In acoustics,
the potential of complex-valued neural networks (CVNNs)
has been explored for audio denoising [11] or music tran-
scription [12], but not for automated auscultation.

For the first time, this work explores the potential of
complex-valued neural networks (CVNNs) for murmur de-
tection. Specifically, the contributions of this paper are as
follows:
• We implement and replicate a real-valued HMS-Net [9],
and introduce its complex-valued variant.
• We demonstrate the effectiveness of CVNNs in heart
sound analysis by examining two distinct architectures —
a deep learning model and the HMS-Net. Across both, our
results consistently indicate a 1% improvement in accuracy
when transitioning from their real-valued variants to their
complex-valued counterparts.
• We achieve a decrease in standard deviation for five-
fold cross-validation, demonstrating a more stable perfor-
mance of complex models in comparison to their real-
valued counterparts across different folds.

2. Methods

For this study, we used the PhysioNet 2022 publicly re-
leased training dataset [5] which contains heart sound (HS)
labels for each patient, as well as for individual samples.

Aiming to mirror the winning entry of the Phys-
ioNet 2022 Challenge, we adopted a similar preprocessing
methodology. Specifically, we filtered and then downsam-
pled the audio to 2000 Hz. Then, all of the recordings were
segmented into 3 s overlapping windows with a hop length
of 1 s. Each segment was then treated as a separate sample
for the model training.

For feature extraction, we computed STFT at three dif-
ferent scales, denoted as x1, x0.5, and x0.25. These scales
had varying Fast Fourier Transform (FFT) bins, window
lengths, and hop lengths. The x1 scale used 446 bins with
window and hop lengths of 200 and 27 samples, respec-
tively; the x0.5 scale utilised 222 bins with 100 and 54
samples; and the x0.25 scale had 110 bins with window
and hop lengths set to 50 and 108 samples. While the
HMS-Net employed all three scales, the basic neural net-
work only used the x1 scale. Further details about both
architectures are provided in the subsequent sections.

In addition, we calculated a quality metric as detailed
in [9]. This metric represented the frequency energy ratio
between 20 and 200 Hz and 0 and 1000 Hz. Given our
focus on detecting murmurs, we retained all the murmur
samples and re-labelled the poor-quality normal samples

(i.e. with a power spectral density ratio below 0.3) as un-
known. In addition, to ensure that the model is exposed to a
relatively balanced dataset, we upsample the murmur class
in the training set by a factor of three. This means that
during the training, the neural network sees each normal
or unknown segment just once but sees the same murmur
segment three times.

For real-valued architectures, we derived the magnitude
from the STFTs using Magnitude =

√
ℜ2 + ℑ2. For

the complex-valued models, however, the raw STFT was
utilised.

2.1. Deep network architectures

We designed a convolutional neural network (CNN)
using TensorFlow Keras. The architecture consists of
the input layer of dimensions (224, 223, 1), followed by
six convolutional layers, each increasing in filter depth,
each with ReLU activation function. Each convolutional
layer is succeeded by a 15% dropout and max-pooling
for dimensionality reduction. Finally, there is a flattening
layer to transition from convolutional segments to a dense
layer with 64 units. The final layer has three units corre-
sponding to the three classes and has a softmax activation.
The Adam optimisation algorithm with a learning rate of
0.0001 is used for training.

Following the winning approach from the PhysioNet
Challenge 2022, we have also implemented HMS-Net —
a hierarchical multi-scale convolutional network [9]. This
architecture is a variant of ResNet [13], in that it processes
spectrograms across three scales: ×1.0, ×0.5, and ×0.25.
There is a module dedicated to learning latent represen-
tations for each of these inputs. After appropriate sub-
sampling, these representations are progressively merged
via concatenation, before a joint processing step, followed
by global average pooling of the time and frequency di-
mensions. Similar to the previous baseline, there is an out-
put layer that produces three logits, followed by softmax.

2.2. Complex-valued neural networks

The complex network variants mirror their real-valued
counterparts, with individual elements being replaced
by their complex equivalents using the NEGU93/CVNN
Python library [14].

Let z, z′ ∈ C be the input and output of a complex-
valued layer, respectively. The output z′ is computed as:

z′ = Wz + b

where W and b are the complex-valued weights and biases,
respectively.

We evaluated multiple complex activation functions,
selecting the best-performing ones for our final re-
sults. The intermediate layers utilise cart relu,



which applies ReLU activation to both real and imag-
inary parts [12]. For the output layers, we employed
softmax real with avg, which applies softmax to
the real and imaginary parts separately and then averages
it.

In CVNNs, constraints arise from the coupling of real
and imaginary parts, leading to interdependent activations
in the complex neurons. Holomorphic activation functions
impose additional mathematical constraints, contributing
to stable learning dynamics. [15] Despite the apparent in-
crease in parameters due to complex numbers, this cou-
pling can effectively reduce the degrees of freedom, adding
a natural form of regularisation. These intrinsic constraints
can make CVNNs more robust and less prone to over-
fitting, potentially resulting in more stable and consistent
performance.

It is worth noting that the complex DNN model reached
optimal performance in just 5 epochs, compared to 8
epochs required for the real-valued model, suggesting
higher training efficiency.

2.3. Prediction and evaluation

The prediction and prediction aggregation process for
both models, in their real and complex-valued forms, was
conducted in a tiered manner:
• Segment-level predictions: For each 3 s segment with
a 1 s overlap, initial predictions were generated using the
respective models.
• Audio recording-level aggregation: This represents the
diagnosis for one auscultatory location per patient, deter-
mined by selecting the most frequent prediction among all
segments of a recording.
• Patient-level aggregation: Based on the aggregated re-
sults of audio recordings, a patient is diagnosed with a
murmur if at least one location indicates its presence. If
half or more recordings for a patient are classified as un-
known, the overall diagnosis defaults to unknown.

The evaluation was conducted using patient-independent
five-fold cross-validation, adopting an 80:20 training-to-
testing ratio. Results are presented as the mean and stan-
dard deviation across the five folds. We reported precision
and sensitivity for each class and the total accuracy.

3. Results and Discussion

In order to confirm our hypothesis — that using STFTs
directly within a complex-valued neural network architec-
ture allows for a richer understanding of amplitude-phase
relationships — we explore the performance of four dis-
tinct architectures: non-complex and complex DNN, and
non-complex and complex HMS-Net. The detailed results
are presented in Table 1.

For a deep neural network, we see that the complex
model outperforms its non-complex counterpart across all
metrics, except the sensitivity of unknown. It is important
to note that all unknown samples consist of normal or mur-
mur heart sounds with elevated levels of noise. Therefore,
the dip in unknown sensitivity when using the complex
model might be attributed to the following reasons: the
complex model is more robust to noise, thereby efficiently
sorting the noisy samples into normal or murmur classes,
or the complex model is more sensitive towards class im-
balance. Since unknown sounds is such a minority class,
we can reasonably expect the performance to fluctuate a
lot. Therefore, going beyond the evaluation scheme of the
PhysioNet 2022 challenge, we also report the accuracy of
the known, which is between the two bigger classes. Both
accuracy of known and total accuracy are higher for the
complex variant than for the real-valued counterpart.

HMS-Net was a tied winner in the murmur detection
task during the PhysioNet 2022 Challenge. In our ef-
fort to faithfully replicate this pipeline, our closest attempt
achieved an average accuracy of 82%. This discrepancy
with the reported average accuracy of 83.7% may stem
from variations in the train-test split or minor differences
in final processing and model training. However, when
comparing our leading HMS-Net variant with its complex-
valued counterpart, we demonstrated an equivalent im-
provement of 1% in favour of the complex variant.

Overall, the HMS-Net outperformed the DNN model in
terms of sensitivity for both murmur and unknown classes.
This could be attributed to the HMS-Net’s multi-scale pro-
cessing capability, which enables the model to capture both
granular and broader audio features. The enhanced total
accuracy of the complex models could be explained by the
ability of complex-valued networks to learn from all avail-
able information encoded in raw STFTs, resulting in more
comprehensive representations of the heart sounds.

It is also worth noting that the complex variants exhib-
ited lower standard deviations across the five folds com-
pared to their non-complex counterparts. This observa-
tion aligns with the hypothesis that the intrinsic constraints
of the complex model contribute to a more stable perfor-
mance.

4. Conclusions

In this study, we explored the use of complex-valued
neural networks for heart murmur detection, directly lever-
aging STFTs. Our results show that the complex-valued
approach, especially when implemented in the HMS-
Net architecture, outperforms its real-valued counterparts
across most metrics.

Our research suggests the potential benefits of a method-
ological shift: complex-valued neural networks might im-
prove the performance of an existing real-valued network.



Table 1. Final results for the basic neural network model and HMSNet for both real and complex-valued inputs and models.
The results are reported for a 5-fold cross-validation as mean ± stdev.

DNN HMSNet
non-complex complex non-complex complex

Precision of normal 0.87± 0.02 0.87± 0.02 0.90± 0.03 0.89± 0.03
Precision of murmur 0.93± 0.09 0.95± 0.08 0.88± 0.07 0.92± 0.06
Precision of unknown 0.31± 0.16 0.33± 0.12 0.29± 0.18 0.30± 0.15
Sensitivity of normal 0.91± 0.02 0.93± 0.03 0.90± 0.03 0.92± 0.02
Sensitivity of murmur 0.60± 0.11 0.63± 0.10 0.68± 0.17 0.64± 0.11
Sensitivity of unknown 0.44± 0.23 0.40± 0.19 0.47± 0.30 0.46± 0.31
Accuracy of known 0.85± 0.03 0.87± 0.03 0.85± 0.05 0.86± 0.03
Total accuracy 0.82± 0.03 0.83± 0.02 0.82± 0.04 0.83± 0.02

A promising area for future research is to compare archi-
tectures successful in other acoustic applications with their
complex-valued versions, specifically for murmur detec-
tion. Additionally, given the importance of accurate pre-
dictions in trust-critical health-related tasks such as mur-
mur detection, we believe it is worthwhile to evaluate the
calibration performance of CVNNs in this context.
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