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Abstract 

Repolarization alternans is one of the mainstays of 

theoretical cardiac electrophysiology and provides a 

link between cellular dynamics and fibrillation. Action 

potential duration (APD) alternans is the simplest 

manifestation of repolarization dynamics. However, 

cardiac dynamics is complex and does not stop at 

period-2. Excitation-contraction coupling can generate 

higher-order periodicities that are precursors to chaotic 

rhythms. Higher-order periods have been 

experimentally elusive and only detected in a few cases.  

We detect higher-order periods using a 

combinatorial algorithm. The key idea of the algorithm 

is to set up a weighted-directed graph, where the 

vertices correspond to the beats, and the links are 

assigned according to the distance metric function 

between the beats. The shortest path between the first 

and last beats in the graph determines the optimal 

periodicity of each beat. 

We applied the algorithm to optical-mapping signals 

recorded using voltage-sensitive fluorescent dyes to six 

human heart transplantation recipients. We detected 

periods 4, 6, and 8, and higher (chaotic areas) with 

heterogeneous spatial distribution. 

Our graph-based algorithm is a valuable tool to 

probe the complex dynamics of cardiac tissue by 

looking beyond classic alternans, especially at fast rates 

and before the transition to chaotic fibrillation. 

 

1. Introduction 

Malignant ventricular arrhythmias, including 

polymorphic ventricular tachycardia (VT) and ventricular 

fibrillation (VF), are the leading causes of sudden cardiac 

death [1]. However, the transition mechanisms from a 

regular rhythm to chaotic VF are still poorly understood. 

The concordant to discordant Action Potential Duration 

(APD) alternans pathway to VF initiation is one of the 

most extensively studied mechanisms of VF initiation [2].  

 

The APD alternans is the beat-to-beat (period-2) 

oscillation in the APD and is one of the mainstays of 

theoretical cardiac electrophysiology. APD alternans is 

the simplest quantifier of repolarization dynamics. Classic 

alternans with period-2 results from the first bifurcation in 

a cascade of bifurcations with periods of 2, 4, 8, and 

higher powers-of-two. We anticipate that as the cycle 

length becomes shorter, higher-order periods appear until 

the system transitions to chaos and, hence, VF. The 

intermediate stages in the period-doubling cascade in 

cardiac tissue have been experimentally elusive and are 

reported in only a few animal models but not in human 

hearts. 

 

Frequency analysis is the standard method to detect 

alternans and higher-order dynamics in long duration 

recordi. However, it is less effective for shorter duration 

recordings and in the presence of intermittent bursts of 

higher-order dynamics. In this study, we aim to develop a 

robust and practical algorithm for detecting higher-order 

periodicities in time series of cardiac signals composed of 

(typically) 50-150 beats. 

 

2. Methods 

2.1. Experimental Setup 

We studied explanted human hearts obtained from 

recipients of heart transplantation at the time of surgery. 

Optical mapping using voltage-sensitive fluorescent dyes 

was performed [3]. Hearts were stimulated at an 

increasing rate until VF was induced. Signals from the 

right ventricle endocardial surface before induction of VF 

and in the presence of 1:1 conduction were processed to 

detect global and local repolarization dynamics. 

2.2. The Algorithm 



 

The combinatorial (graph-based) algorithm finds the 

optimal periodicity of each beat in each input sequence 

[4]. Figure 1 shows a representative optical mapping 

recording and the corresponding APD trend that shows 

obvious period-4.  

 

For each pixel, the input to the algorithm is a sequence 

of 𝑛 beats separated by the upstrokes of the action 

potential. Let 𝑑(𝑖, 𝑗) be a distance function that returns a 

non-negative real value, quantifying the difference 

between beats 𝑖and 𝑗. We assume that 𝑑(𝑖, 𝑗) satisfies the 

metric axioms, meaning that 𝑑(𝑖, 𝑖) = 0, 𝑑(𝑖, 𝑗) = 𝑑(𝑗, 𝑖), 
and 𝑑(𝑖, 𝑗) + 𝑑(𝑗, 𝑘) ≥ 𝑑(𝑖, 𝑘). In this paper, we define 

the distance as the mean squared difference between 

beats. Figure 2 depicts the recurrence map for Figure 1, 

showing the pairwise similarity index (the inverse of the 

distance). We see the regular pattern formed because of 

period-4 with intermittent breaks in the pattern. 

 

We start the discussion by presenting the 

combinatorial algorithm to detect period-2 alternans. Our 

task is to classify each beat in the input sequence as one 

of two classes A and B. For example, A can be the long 

APD beats and B the short APD ones. A stable alternating 

sequence can be written as ABABAB. For such a 

sequence, we can simply assign A to the odd beats and B 

to the even beats. However, the input sequence may glitch 

(e.g., two adjacent beats are both short APD) such that the 

odd/even algorithm fails to work. This problem is 

especially relevant to higher-order periodicity, where 

glitches and frameshifts are the rules rather than the 

exception (Figure 2). The combinatorial algorithm is 

designed to overcome this shortcoming of simple 

periodicity detection algorithms.  

 

We find the optimal assignment by setting a weighted 

directed graph in such a way that the shortest path 

between the starting vertex (beat 1) and the last vertex 

(beat n) reveals the optimal assignment (Figure 3). 

 

 

 

Figure 2. Schematics of the combinatorial algorithm 

for periodicity analysis.  

 

Let 𝐺 = (𝑉, 𝐸) be a graph composed of 𝑛 vertices 

(corresponding to n beats) and 𝑚 > 𝑛 edges. For the 

detection of period-2, we set up two edge types. An edge 

of the first type connects vertex 𝑖 to vertex 𝑖 + 1 with 

weight 𝑑(𝑖, 𝑖 + 1). An edge of the second type connects 𝑖 
to 𝑖 + 2 with weight 𝑑(𝑖, 𝑖 + 2) + 𝑑(𝑖 + 1, 𝑖 + 3) + 𝜆𝑤, 

Figure 1. Example optical mapping signal and the 

corresponding APD trend from a human heart 

showing obvious period-4. 

Figure 2. A recurrence graph showing the similarity 

index between the beats in Fig 1. A value of 1 means 

identical (the main diagonal) and a value of 0 means 

no significant similarity. 



 

where 𝑤 is the mean distance between two adjacent 

vertices and 𝜆 is a super-parameter. The second term is 

for regularization to prevent spurious high-order detection 

by favoring shorter periods. The optimal solution is found 

by assigning A to each vertex on the shortest path from 1 

to 𝑛 and B to the vertices not on the shortest path.  

 

For detection of period-4, we expand the possible 

classes of assignment to {A,B,C,D}. Now, an ideal input 

sequence is ABCDABCDA. We can modify the 

algorithm above by adding edges of type 𝑖 → 𝑖 + 3 and 

𝑖 → 𝑖 + 4 to detect periods up to 4.  

 

Finally, we extend the algorithm to detect all 

periodicities up to a maximum 𝑝 (Algorithm 1). In this 

paper, we set 𝑝 = 8. We add 𝑝 outgoing edges to each 

vertex 𝑖 to the next 𝑝 vertices with weights set as shown 

below. The formula for weights is designed in such a way 

that if the local periodicity in the vicinity of vertex 𝑖 is, 

say 𝑞, then edge 𝑖 → 𝑖 + 𝑞 falls on the shortest path from 

1 to 𝑛. Therefore, by finding the shortest path, we can 

determine the local periodicities.  

 

 

 

3. Results 

We applied the algorithm to optical-mapping signals 

recorded using voltage-sensitive fluorescent dyes to six 

human hearts obtained from heart transplantation 

recipients. 

 

Frequency analysis revealed a prominent and 

statistically significant 1:4 peak (period-4) in three hearts. 

A borderline peak of uncertain significance was seen in 

another one. No 1:4 peak was present in two hearts. 

Figure 4 lists representative examples of period-2, period-

4, period-6, period-8, and higher-order chaotic signals and 

the corresponding APD trends. Period-4 is stable, but 

higher-order periods are intermittent. Specifically, the 

period-8 signal is irregular but still has sufficient 

periodicity to be annotated period-8 by the local 

algorithm.  

 

 

The distribution of areas with higher-order periodicity 

is heterogeneous in space and time and variable in 

different hearts. The spatial distribution of the dominant 

periodicity in four hearts is depicted in Figure 5. Period-4 

regions are mainly circular and may anchor to anatomical 

structures, in contrast to period-6 and -8 regions that are 

spatially expanded and have a dynamical nature. 

 

4. Conclusion 

Our combinatorial (graph-based) algorithm is a 

valuable tool for probing the complex dynamics in 

cardiac electrophysiology. The algorithm is designed to 

detect higher-order periods in short segments of cardiac 

signal and in the presence of noise. Higher-order 

dynamics, beyond period-2 of classic alternans, occur 

commonly in diseased hearts. Our results suggest that the 

Algorithm 1. The Combinatorial Periodicity 
Detection Algorithm 
 

Input: a sequence of 𝑛 beats, a distance metric 

𝑑(𝑖, 𝑗) between any two beats, and a maximum 

periodicity of 𝑝. 

Output: a sequence of 𝑛 integers in the range 1 to 

𝑝, showing the best-fit periodicity for each beat. 

1. Setup a directed weighted graph 𝐺 =
(𝑉, 𝐸) with 𝑛 vertices. 

2. Add 𝑝 outgoing edges from each vertex to 

the next 𝑝 vertices. The weight of each 

edge is set as 𝑊(𝑖 → 𝑗) = ∑ 𝑑(𝑖 +
𝑗−𝑖−1
𝑘=0

𝑘, 𝑗 + 𝑘) + (𝑗 − 𝑖 − 1)𝜆𝑤. 
3. Find the shortest path from vertex 1 to 

vertex 𝑛. 
4. The weights are assigned in such a way 

that the shortest path encodes the 
periodicity of each beat according to which 
outgoing edge is included in the shortest 
path. 

5. Read the beat-wise periodicity from the 
shortest path! 

 

Figure 3: Representative APD alternans trends and 

optical mapping signals with periods 2, 4, 6, 8, and 

chaotic. 

 



 

period-doubling route to chaos may be one of the 

mechanisms of initiation of ventricular fibrillation. 

Detection and localization of higher-order dynamics may 

help with risk stratification and guide ablation of 

ventricular fibrillation.   
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Figure 4. Spatial distribution of higher-order 

periodicities in four ex vivo human hearts. 


