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Abstract 

This research endeavors to leverage advanced AI 

algorithms for the differentiation between typically 

developing children and those afflicted with Intrauterine 

Growth Restriction (IUGR) disease. We deployed three 

distinct AI algorithms: Quadratic Discriminant Analysis 

(QDA), Linear Discriminant Analysis (LDA), and Support 

Vector Machine (SVM). These algorithms were applied to the 

task of classifying the two target groups while discerning the 

pivotal parameters contributing to their classification. The 

obtained results yielded classification accuracy scores of 

92.89%, 89.89%, and 87.67% for QDA, LDA, and SVM, 

respectively. Notably, the analysis revealed that parameters 

related to birth weight held the most substantial influence in 

distinguishing between the two cohorts. In light of our 

conclusive findings, we recommend the utilization of 

Quadratic Discriminant Analysis (QDA) as a valuable tool for 

clinicians seeking to identify children at risk of IUGR disease. 

This research contributes to the enhancement of diagnostic 

methodologies in pediatric medicine, fostering more accurate 

and timely interventions for affected individuals. 

 

 

1. Introduction 

Coronary heart diseases (CHD) represent a significant 

global health concern, accounting for a substantial 

proportion of worldwide mortality rates. Pioneering 

research conducted by Barker [1] has illuminated a 

noteworthy association between individuals who 

experienced intrauterine growth retardation (IUGR) and 

their heightened susceptibility to CHD and hypertension in 

adulthood. Within the realm of cardiac health, reduced 

Heart Rate Variability (HRV) has emerged as a key 

indicator, linked to an increased risk of cardiac mortality 

among adults [2]. HRV is defined as the fluctuation over 

time in the intervals between successive heartbeats, 

predominantly regulated by extrinsic factors governing 

heart rate dynamics. HRV serves as a valuable proxy for 

assessing overall cardiac health and the state of the 

Autonomic Nervous System (ANS), which plays a pivotal 

role in orchestrating cardiac activity [3]. The ANS exerts 

control over heart rate through two primary branches: the 

parasympathetic (vagal) and sympathetic nervous systems. 

The parasympathetic branch, mediated by acetylcholine 

release, decelerates heart rate, while the sympathetic 

nerves, via noradrenalin release, stimulate a faster heart 

rhythm [4]. Perturbations in ANS function, manifesting as 

reduced HRV, have been conclusively linked to an 

elevated risk of cardiovascular mortality. 

 

In this study, we employ an array of models and cutting-

edge Artificial Intelligence (AI) algorithms to classify and 

discriminate between individuals within the normal and the 

diseased cohorts. Our investigation aims to elucidate 

critical insights into the interplay between IUGR, HRV, 

and the risk of coronary heart diseases, ultimately 

contributing to the refinement of diagnostic and 

therapeutic strategies in the realm of cardiovascular health. 

 

2. Method 

In this study, we scrutinized the RR (NN) sequences within 

a distinctive dataset, encompassing 44 children with IUGR 

and 31 individuals in the normal cohort. We focused on 

figuring out when the day and night start by setting a 

specific RR threshold, which are indicated by the two 

redlines in figure 1. Upon reaching this threshold, our 

algorithm meticulously demarcated the commencement of 

daytime and night-time periods. To ensure uniformity and 

precision in our RR signal analysis, we applied cubic spline 

interpolation techniques. 

 

 
Figure 1: This figure is showing RR (NN) of day and night 

time, indicated by red the lines. 



 

The dataset was divided into training and testing sets, 

with the testing set comprising 25% of the total data. To 

ensure an equitable representation of both normal and 

diseased data points in the test set, a stratified shuffling 

split method was employed. Additionally, 10-fold cross-

validation was conducted to ensure that the final model's 

performance is not contingent on the specific data split 

used. 

 

Several preprocessing steps were applied to the data. 

These steps included retaining only one of the parameters 

exhibiting a linear correlation higher than 0.99, scaling the 

data, and removing parameters with a variance less than 

1%. 

 

For feature selection, the ANOVA F-test was employed 

to rank the parameters when fitting the training data to a 

classification model. Subsequently, a combination of 

Principal Component Analysis (PCA) using various 

kernels (linear, polynomial, RBF, sigmoid, and cosine) 

was applied to reduce the dimensionality of the data. 

Following PCA, the Synthetic Minority Oversampling 

Technique (SMOTE) algorithm was employed to address 

data imbalance. 

 

In the final phase of our analysis, three classifiers were 

trained on the balanced dataset, specifically Quadratic 

Discriminant Analysis (QDA), Linear Discriminant 

Analysis (LDA), and Support Vector Machine (SVM). The 

Area under the Receiver Operating Characteristic Curve 

(ROC-AUC) was used as the pivotal metric for ranking the 

performance of the algorithms. 

 

  

 

3. Results and Discussion 

The previously mentioned models were applied to the 

Heart Rate Variability (HRV) data of both normal and 

diseased children with the objective of classifying and 

distinguishing between the two cohorts. 

 

Among the models evaluated, QDA emerged with the 

highest performance score, followed by LDA and, lastly, 

SVM. Notably, in the case of QDA, the parameters that 

contributed most significantly to the classification were 

birth weight centile and birth weight. For LDA, a subset of 

15 parameters was selected, while SVM relied on 6 

parameters for its classification. 

 

Figures 2 and 3 depict the decision boundary maps 

generated using the QDA model, projected onto the first-

second component plane and the first-third component 

plane, respectively. These visualizations clearly illustrate a 

distinct demarcation between the IUGR and normal 

cohorts. In the context of PCA, optimal results were 

achieved when employing a third-degree polynomial 

kernel with 7 principal components. Furthermore, the 

algorithm identified two paramount parameters, namely 

birth weight and birth centile, as the most influential in the 

classification process. It is noteworthy that the inclusion of 

additional parameters resulted in a deterioration of model 

performance, as demonstrated in Figure 4. 

 

   
Figure 2: This figure shows the decision boundary map 

for principal components 1 and 2. 

 

 

 
Figure 3: This figure shows the decision boundary map 

for principal components 1 and 3. 

 

Figures 5 and 6 depict the decision boundary maps 

generated using the LDA model, projected onto the first-

second component plane and the first-third component 

plane, respectively. These visualizations clearly illustrate a 

distinct demarcation between the IUGR and normal 

cohorts. In the context of PCA, optimal results were 

achieved when employing a linear kernel with 3 

components. Furthermore, figure 7 shows a heat map of the 

parameters yielding the highest score for the LDA model. 



Similar to QDA, the inclusion of additional parameters 

resulted in a deterioration of model performance, as 

demonstrated in figure 8. 

 

 
Figure 4 This figure shows the QDA model scores as a 

function the number of parameters used. 

 

A heatmap illustrating the 15 parameters identified by 

LDA as having the most substantial influence on the 

separation of cohorts is presented in figure 6. 

 

 

 

 
Figure 5 This figure shows the decision boundary map 

for principal components 1 and 2. 

 

 

 

Finally, figures 9 and 10 shows the decision boundary 

maps generated using the SVM model. As in the previous 

two models, the figures clearly illustrate a distinct 

separation between the IUGR and normal cohorts. In the 

context of PCA, optimal results were achieved when 

employing a cosine kernel with 3 components. 

Furthermore, figure 11 shows a heat map of the parameters 

yielding the highest score for the SVM model. Similar to 

the other two models, the inclusion of additional 

parameters resulted in a deterioration of model 

performance, as demonstrated in Figure 12. 

 

 
Figure 6 This figure shows the decision boundary map 

for principal components 1 and 3. 

 

 

 
Figure 7 This figure shows a heat map of the parameters 

predicted by LDA as producing the highest-class 

separation. 

 

 
Figure 8 This figure shows the LDA model scores as a 



function the number of parameters used. 

 

 
Figure 9 This figure shows the decision boundary map 

for principal components 1 and 2.  

 

 
Figure 10 This figure shows the decision boundary map. 

 

Finally, table 1 summarize the results of the three models. 

 

Table 1. The score and the number of parameters used in 

each model. 

 

Model No. 

parameters 

Score 

QDA  2 92.89 

LDA 15 89.89 

SVM 6 87.67 

 

 
Figure 5 This figure shows a heat map of the parameters 

predicted by SVM as producing the highest-class 

separation. 

  
Figure 12 This figure shows the SVM model scores as a 

function the number of parameters used. 

 

 

Conclusion 

All three AI algorithms employed in this study 

demonstrated exceptional proficiency in accurately 

classifying and distinguishing between the Normal and 

diseased cohorts. Notably, essential parameters such as 

birth weight and birth centile were incorporated into the 

classification models, aligning with the seminal birth 

origin theory elucidated by Barker. 

 

The utilization of these AI models and tools has the 

potential to serve as valuable aids for clinicians in the 

precise definition and differentiation of control and IUGR-

afflicted children. It is imperative to emphasize that further 

data acquisition is essential to validate these results 

rigorously and to ascertain the viability of integrating such 

AI models into clinical setting. 
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