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Abstract 
Accurately predicting outcome after cardiac arrest (CA) is 
necessary to address the ethical, economical, and societal 
issues following this highly prevalent condition in the 
Western population. This research was conducted as part 
of the Predicting Neurological Recovery from Coma After 
Cardiac Arrest: The George B. Moody PhysioNet 
Challenge 2023 (team name: EEGnition). We used 
machine learning on spectral features and network 
dynamics of resting-state electroencephalography (EEG) 
to predict the long-term functional outcome of comatose 
patients following CA. We extracted features from six 
categories of data: (i) demographic and clinical; (ii) 
electrocardiogram recording; (iii) general EEG 
recording; (iv) EEG spectral analysis; (v) EEG criticality 
and complexity analysis; and (vi) EEG functional 
connectivity. A binary classification into good and poor 
outcomes was then performed using AutoML - an 
automatized machine learning pipeline. Our model 
received a challenge score of 0.525 (ranked 16th out of 36 
teams in the final challenge evaluation) on the hidden test 
set. The best performing features included the number and 
frequency of spectral peaks, Shannon entropy and 
functional connectivity. Our approach provides evidence 
for the prognostic value of network dynamics from EEG 
recorded acutely following CA. 

1.    Introduction 
The widespread occurrence of cardiac arrest (CA) 

generates a myriad of ethical, economical, and societal 
consequences. Approximately 80% of CA patients who are 
successfully resuscitated are comatose as a result of post-
cardiac arrest brain injury [1]. Among these, 50-60% either 
do not survive or live with severe disability [2]. Critical 
decisions about how aggressively to pursue care are made 
in the days following the return of spontaneous circulation 
(ROSC), including the decision of whether or not to 
withdraw life-sustaining treatment. Thus, early and 

accurate identification of patients who are likely to make a 
meaningful recovery is critical in shaping further treatment 
and care trajectories [1].  

Resting-state electroencephalograms (EEG) are often 
recorded for up to 72 hours in the intensive care unit post-
CA; this data has been shown to have strong prognostic 
potential [3]. Automated machine learning (ML) 
classification models may be applied to this EEG data to 
identify the most promising features for predicting patient 
prognosis and optimizing prognostic accuracy [4].  

As part of the 2023 George B. Moody PhysioNet 
Challenge, we used a multi-site meta-database [5]–[7], to 
predict the long-term functional outcome of comatose 
patients following CA. We developed an open-source ML 
algorithm to predict the 6-month functional outcome of CA 
patients using clinical data and physiological signals. 

2.      Methods 
2.1    Dataset  
We analyzed the open-source I-CARE database 
(International Cardiac Arrest Research Consortium 
Database) [5]. 607 patients were included in the training 
dataset, 107 patients were used as a hold-out validation set, 
and 306 patients were included in the hold-out test set. The 
dataset included EEG, electrocardiogram (ECG), 
demographic information, and treatment information. The 
dataset also provided functional outcome measures using 
the Cerebral Performance Category (CPC) scale at 6 
months post-ROSC. For this study, CPC scores were 
binarized into two groups: a CPC score of 2 and lower was 
considered a “Good Outcome” and scores of 3 to 5 were 
considered a “Poor Outcome”. 

2.2.  Preprocessing 
EEG data was preprocessed using the MNE Python 
toolbox [8]. Data was bandpass-filtered between 0.1 and 
40 Hz, notch-filtered at the corresponding utility frequency 
and resampled to 125 Hz. The data was then segmented 



 

 

into non-overlapping 10 second epochs. For further 
analyses, we used a subject-specific threshold (i.e., lowest 
standard deviation to keep 5 minutes of data) to select 5 
minutes (i.e., 30 epochs) which were least contaminated by 
non-physiological artifacts from each hour of recording. 
To minimize computational resources, only ten percent of 
the available EEG recordings per participant were 
analyzed (e.g., for 30 hours of EEG data, we analyzed 
every third hour of available recording). We then extracted 
features from six categories: (i) demographic and clinical; 
(ii) ECG; (iii) general EEG recording; (iv) EEG spectral 
analysis; (v) EEG criticality and complexity; and (vi) EEG 
functional connectivity. 

2.2.  Feature Extraction 
Demographic and clinical features 
We extracted patient sex (male/female/unknown) and age 
(years) from the available demographic data. From the 
patient clinical information, we included the treating 
hospital, time from the CA to ROSC, the location of the 
CA (i.e., in or out of hospital), the type of cardiac rhythm 
recorded upon resuscitation (i.e., shockable rhythm versus 
non-shockable) and the use of targeted temperature 
management (TTM) during the recording (yes/no). 

ECG features 
ECG features were calculated using the first available hour 
of data. Time- and frequency-domain features of heart rate 
variability were calculated using Neurokit2 toolbox [9]. 
General EEG recording features 
General recording information included the number of 
existing recordings, patient-specific preprocessing 
thresholds, the time post-ROSC of the first available 
recording and each channel’s signal mean and standard 
deviation, which was calculated on epochs of each 
available hour of recording. 
Spectral features 
We calculated spectral power in the delta (0.1-4 Hz), theta 
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-
40 Hz) bandwidths. Power spectral density was calculated 
on every channel individually, using Welch’s method, and 
averaged over the corresponding frequency bandwidth. We 
extracted the spectral slope, number of existing peaks and 
peak frequency, and power of the first identified peak using 
the fitting oscillations and 1/f algorithm [10]. Spectral 
features were calculated on epochs of each available hour 
of EEG data.  
Criticality and Complexity features 
Criticality-related EEG features include the deviation from 
the criticality coefficient, avalanche repertoire size, 
branching ratio and the Fano factor, which were calculated 

using a custom Python toolbox [11]. Avalanche criticality 
measures were estimated on epochs of each available hour 
of recording. The complexity of the EEG signal was 
estimated using Lempel-Ziv complexity, Petrosian 
fractality, Katz fractal dimension, permutation entropy, 
Shannon entropy and the number of optimal embedding 
dimension. Due to limited computational resources, only 
Lempel-Ziv complexity was estimated on epochs of each 
available hour of recording. Other complexity measures 
were estimated solely on epochs from the first available 
recording. All complexity measures were calculated on 
each  epoch and channel individually using the Neurokit2 
toolbox [9] and subsequently averaged over time.  
Functional Connectivity features 
Functional connectivity (FC) was estimated using the 
weighted (wPLI) and directed phase lag index (dPLI) in the 
theta, alpha and beta bandwidths [12], [13]. Both matrices 
were calculated on each epoch individually using MNE-
Python [8] and were averaged over time. FC matrices were 
averaged to yield the mean connectivity from one electrode 
to all other existing electrodes. Due to limited 
computational resources, FC features were calculated 
solely for epochs from each patient’s first available hour of 
EEG.  
Longitudinal feature development 
We recorded the longitudinal development of features that 
were calculated on epochs from all available hours of 
recording by calculating the slope of the linear regression 
for the individual whole-brain averaged feature over time.  
Spatial averaging of features 

All features (excluding avalanche features) were 
calculated on every channel individually. Due to 
variability in available channels between patients, 
individual values were averaged over brain regions (i.e., 
anterior, posterior, left, right, frontal, central, parietal, 
temporal, occipital). Region-averaged features of the first 
available recording were combined with time-resolved and 
demographic features, yielding a final total of 302 features.  

2.3.     Machine learning 
ML models were trained using the six feature 

categories, resulting in a total of 302 training features. 
Model training and evaluation was conducted 
using AutoML mljar-supervised [14] – an automated 
Python ML package using scikit-learn [15]. A binary 
classification model was initialized using the algorithms 
compete mode, 100 golden features, and 4 top models to 
improve (mode = 'Compete', golden_features = 100, 
top_models_to_improve = 4) and trained to predict the 
binary functional outcome measure (i.e., good or poor).  

AutoML was employed to test a variety of ML 



 

 

algorithms on the training set, to quantify algorithm 
performance, and to perform automatized hyperparameter 
tuning. For classification models, AutoML evaluated 
model performance using the logloss metric. Within one 
run, AutoML performed and compared models from eight 
categories: linear models, decision tree, random forest, 
extra trees, light gradient-boosting machine (LightGBM), 
eXtreme Gradient boosting (XGBoost), CatBoost, neural 
network and nearest neighbors. The final ensemble 
algorithm was then constructed by combining various ML 
algorithms into one conglomerate algorithm, where 
individual algorithms are weighted according to their 
performance using a fivefold cross validation. The final 
model predicted the binary outcome and the probability of 
an unfavorable outcome. 
Feature selection 

Missing feature values were inputted using the median 
value of the feature. Features were normalized before ML 
training occurred. AutoML calculated “golden features” by 
combining pairs of features (i.e., multiplication, division, 
addition, or subtraction of the two features) to obtain 
transformed potential ‘golden’ feature. This process was 
repeated for all possible pairwise feature combinations (up 
to a maximum of 250,000 pairs). New features were ranked 
in terms of logloss values. The 100 best performing 
features were then selected as “golden features” and used 
as inputs for certain ML algorithms. We also identified 
‘selected features’ -- original features that contribute most 
to the ML algorithm with the smallest logloss value – by 
using pseudo features with random values as additional 
input for the best performing ML algorithm. We then 
conducted a permutation-based feature importance 
analysis. If features were ranked as more important than 
the random feature for more than 2 of the five folds during 
validation, they were considered selected features. 
Features which were not included in golden or selected 
features were dropped from the given ML algorithm.   

2.4.     Model evaluation 
The best performing models were selected using logloss 

values of binary predictions on a fivefold cross validation 
of the training data. Additionally, we calculated the 
model’s accuracy (Acc), precision, and area under the 
curve (AUC). The model’s performance on the hidden 
cross-validation and test data was evaluated using the 
challenge score: the true positive rate (TPR) for predicting 
a poor outcome given a false positive rate (FPR) of less 
than or equal to 5% at 72 hours post ROSC. The challenge 
score was evaluated four times individually, using data 
from the first 12-, 24-, 48- and 72-hours post-ROSC. 

3.     Results 
Performance on training data 

The models with the best performance were Xgboost, 
CatBoost, LightGBM, Neural Network and 
RandomForest. Individual model performance on the 
training set is reported in Table 1. The Ensemble method 
combined these models to perform a final decision (see 
Table 1), achieving a classification accuracy of 74%. 

Table 1. Individual performance of selected model and 
performance of Ensemble method. 
 

 

The top ten percent of features which best distinguished 
patients according to their functional outcome were: the 
presence of shockable rhythms, the number and frequency 
of spectral peaks, Shannon entropy, and the functional 
connectivity (wPLI and dPLI) in the theta, alpha and beta 
frequency band.  
Final challenge performance  
On the holdout validation data, our model achieved a 
challenge score of 0.358 at 12 hours, 0.463 at 24 hours, 
0.522 at 48 hours and 0.627 at 72 hours post-ROSC. On 
the holdout test data, our model achieved a challenge score 
of 0.243 at 12 hours, 0.411 at 24 hours, 0.475 at 48 hours 
and 0.525 at 72 hours post-ROSC (see Table 2). 

Table 2. Challenge Score (True positive rate at a FPR of 
0.05) for our final selected entry (team EEGnition), 
including the ranking of our team on the hidden test set.  
 

Training Validation Test Ranking 
0.843 0.627 0.525 16/36 

 

4.    Discussion and Conclusion 
The aim of this study was to develop a ML model that 

could accurately predict long-term functional recovery in 
patients post-CA using clinical data and longitudinal EEG 
and ECG data. Using the resting-state EEG recordings 
within 72 hours post-ROSC, we were able to predict the 
functional outcome with a challenge score of 0.525 using 
an Ensemble method.  

Our ML model strongly relied on features from the first 
available hour of EEG recording, rather than the 
longitudinal features. These results corroborate with 
previous studies showing that early EEG recordings have 
a greater prognostic information with higher specificity 

Model  Logloss Acc Precision AUC 
Xgboost 0.54 0.74 0.94 0.77 
CatBoost 0.56 0.73 1 0.75 
LightGBM 0.56 0.72 1 0.75 
RandomForest 0.55 0.71 1 0.75 
Neural Net 0.69 0.71 1 0.71 
Ensemble 0.53 0.74 1 0.78 



 

 

compared to post-48-hour recordings, even in the presence 
of TTM and light to moderate sedatives [16]. The inclusion 
of EEG spectral features and dynamic network properties 
– such as entropy and functional connectivity – in the ML 
algorithm yielded greater discriminative power, 
highlighting their potential importance in predicting 
outcomes in this patient population. 

The results of this study needs to be interpreted in light 
of several limitations. First, automized ML tools such as 
AutoML are a valid framework for the exploration of 
different types of algorithms but provide relatively low 
interpretability and are not well suited for the clinical use. 
Second, our model’s predictability may be influenced by 
confounding factors such as the inclusion of patients  who 
were withdrawn from life-sustaining treatment in the 
natural death category (CPC of 5) and the potential 
inclusion of deaths resulting from non-brain related 
complications, such as metabolic conditions, which fall 
beyond our model’s scope. Third, TTM treatment requires 
sedative administration during the initial 24 hours post-
CA, which may confound the accuracy of our prediction 
model due to the lack of information regarding 
administration parameters. Fourth, while automated EEG 
preprocessing pipelines are widely available for recordings 
from healthy adults, the automatic preprocessing of EEG 
from brain-injured patients without the validation of a 
trained experimenter can introduce severe confounds, as 
pathological signal characteristics can be automatically 
removed as noise. The validation of data quality by a 
human experimenter would be crucial for the development 
of a clinical tool from this work.  

In summary, we demonstrated the feasibility of an 
automated ML model for the prediction of long-term 
functional outcome post CA using network dynamics and 
spectral properties of resting-state EEG. Future endeavors 
dedicated to optimizing predictive tools that minimize the 
false positive rate can have a tremendous impact on the 
treatment decisions immediately post-resuscitation for this 
clinical population.  
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