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Abstract

Catheter ablation presents the higher success rate in
the treatment of supraventricular tachyarrhythmias. The
correct location of the arrhythmogenesis and related cir-
cuits to be target is the current clinic challenge. In this
study is presented a methodology based in non-invasive
maps to improve diagnostic of type and mechanism lo-
cation. This work ranked 40 biomarkers extracted from
Phase, Dominant Frequency, Organization Index, Local
Activation Time and Optical Flow maps. These maps
were obtained from 22 distinct realistic arrhythmic mod-
els (AT: 8, AFL: 4 and AF: 10), on both torso and recon-
structed epicardium signals (ECGi). The pipeline ranked
the biomarker’s contribution in the classification of the
maintaining arrhythmic mechanism and its location, bas-
ing on a combination of three different indexes: Analysis of
variation (ANOVA), Kendall tau and Lasso. On the torso
maps, the mechanism classification obtained an overall ac-
curacy of 0.864, with the location accuracy of 0.818, and
on epicardium reconstructed maps (i.e ECGi) the accuracy
is yet to be calculated. The novel Optical Flow (along
with phase and frequency) related biomarkers showed a
great contribution in the location and classification of the
arrhythmias’ mechanisms. Non-invasive maps allow clas-
sification and mechanism spatial location.

1. Introduction

The heart is a vital organ that functions as an electrical-
mechanical pump, responsible for transporting essential
substances to different tissues and organs in the body. Any
impairment in the heart’s ability to effectively pump blood
can lead to dysfunction, irreversible organ damage, and
even death. Factors such as genetics, aging, poor diet,
a sedentary lifestyle, and excessive alcohol consumption
can impact heart health and contribute to heart diseases,

including cardiac arrhythmias [1].
The three most common cardiac arrhythmias in clinical
practice are atrial tachycardia (AT), atrial flutter (AFL),
along with AF [2]. These arrhythmias have different un-
derlying mechanisms: AT is characterized by localized
cells firing radially in a regular high-frequency rhythm,
known as an ectopic focus [2]; AFL involves a regu-
lar high-frequency rhythm propagating as a macroreentry,
typically around the valves or fibrotic regions [3]; AF is
characterized by uncoordinated high-frequency atrial acti-
vations, resulting in the deterioration of mechanical func-
tion and the presence of functional rotors [4]. AF is the
most common cardiac arrhythmia encountered in clinical
practice, affecting approximately 2% of the adult popula-
tion worldwide [4]. The compromised atrial systolic and
diastolic functions in AF lead to a decrease in cardiac out-
put, increasing the risk of thromboembolic events, heart
failure, and sudden arrhythmic death [5].
Currently, radiofrequency catheter ablation is used as a
treatment for these three arrhythmias, and it has been
shown to be safe and effective. Accurate localization of the
driving mechanism is crucial for the success of the proce-
dure, and it is typically achieved through invasive electrical
mapping of the atrium [6], which increases the duration of
the surgical procedure. We hypothesize that non-invasive
classification and localization of cardiac arrhythmias can
be achieved using biomarkers extracted using high-density
body surface and ECGi Phase, Dominant Frequency, Or-
ganization Index, Local Activation Time and Optical Flow
maps. If successful, these methods could serve as valuable
tools to assist clinicians in planning therapeutic strategies
before invasive procedures.

2. Methods

In this work, realistic in silico models were used. The
models simulated the electrical behavior of the left atrium



(LA) and right atrium (RA) in the three arrhythmias. The
models consist of 284,578 nodes and 1,353,783 tetrahe-
drons and a total of 22 simulations were conducted, each
representing one of the three distinct arrhythmia mecha-
nisms: AT (with 8 simulations), driven by an ectopic focus;
AFL (with 4 simulations), driven by a macro-reentrant cir-
cuit; and AF (with 10 simulations), driven by functional
rotors [7]. The system of differential equations in the atrial
cell model was solved using Runge-Kutta integration.

From all simulations, the atrial geometry is simplified
to a uniform triangular mesh with 2048 nodes, and the
corresponding atrial electrograms (AEGM, fs = 500) is
obtained. The AEGM is used in a forward solution to
simulate the BSPM signals referring to a torso mesh with
771 nodes, then white Gaussian noise was added to the
BSPM signals with a signal-to-noise ratio (SNR) of 30,
and a reduced number of leads (567) was selected [3, 7].
The BSPM signals are then used to reconstruct the AEGM
(rAEGM) by applying the inverse solution and Tikhonov
regularization method, such as in the ECGi technique.

In order to obtain a bi-dimensional isopotential map
from the thre-dimensional signals, some additional steps
were made.For the BSPM the coordinates of the nodes in
the torso geometry underwent cylindrical projection and
were then interpolated onto a 30 by 65 grid using cubic
splines. For the atria geometry a software was developed,
where for each node, a 35x35 grid is created with the inter-
polated signals from the node’s neighbors. Specifically, for
each node and its neighbors, a partial mesh is created and
projected onto a plane. An optimization based on the orig-
inal mesh is performed to reduce the spatial deformation
caused by the projection. The signals from the projected
partial mesh are then interpolated into the 35x35 grid us-
ing cubic splines, generating a bi-dimensional isopotential
map for each of the 2048 nodes. This projection is here
called vertex-wise projection. A variation of the vertex-
wise projection was made: a four view projection. This
projection follows the same steps than the previous one,
but selecting only four vertices, referring to the LA and
the RA, and the anterior and posterior portion of the atria,
the selecting a bigger neighborhood around the vertices,
and interpolating in a 50x50 grid.

2.1. Biomarker Computation

44 biomarkers were extracted from different kind of
maps, computed over the BSPM and rAEGM potentials
from realistic in silico models, with a signal-to-noise ra-
tion of 30. For the later one, the four-view projection was
used. After, the biomarkers were ranked based on their
contribution in the classification of the arrythmias, and the
best biomarkers were used in a classification model.

DF Maps: DF maps were generated using a previously

validated method based on continuous wavelet transforms
[8]. Five biomarkers were calculated from the DF maps:
(i) DF mean (DF-M), (ii) median (DF-Mdn), (iii) mode
(DF-Mo), (iv) highest DF (HDF) and (v) inter-quartile
range (IQR). Regions around the HDF value (HDFr) were
identified where |DF − HDF | ≤ 1Hz. From HDFrs,
seven biomarkers were computed: (i) number of HDFrs
(DF-Nr), (ii) average size (DF-Ms), (iii) standard deviation
(SD, DF-SDs), (iv) percentage of the total area occupied by
HDFr (DF-Ar), (v) mean (DF-MOI), (vi) standard devia-
tion (DF-SDOI), and (vii) inter-quartile range (DF-IQROI)
of the organization index (OI). To exclude DFs related to
harmonic components or noise, which could affect HDF
estimations and related biomarkers, DF values above the
90th percentile were excluded.

Phase Maps: To obtain the phase maps, a narrow 4th
order Butterworth band-pass filter with a range of 2 Hz
centered around the HDF value was applied to the BSPM
signals. The filtered signals were then subjected to the
Hilbert transform. The phase angle was computed by tak-
ing the arc-tangent of the division between the Hilbert
transformed signal and the original signal [3]. The signals
were downsampled to 128 Hz to reduce processing time.

Rotational activity was detected by identifying phase
singularity points (SPs), which were defined as points
where all phases converge. A Canny edge detector was em-
ployed to detect phase discontinuities in the phase maps,
indicating shifts from +π to −π. The endpoints of these
edges were considered potential SPs. The analysis of these
points involved examining the phase values of neighbor-
ing points within rings of different radii (2 to 10 cm). The
phase values were obtained through interpolation based on
the eight closest pixel values. Criteria were developed to
classify a point as an SP, including the requirement that
the phase progression on at least two rings should satisfy
the following conditions: (i) the phase should progress by
a minimum range of π, (ii) the progression should be or-
dered in at least 60% of its length, and (iii) there should be
no phase discontinuities larger than π.

2.1.1. Spatiotemporal Analysis of Rotors

The distribution of SPs in space and time was analyzed
based on filament maps and heatmaps (HM), calculated
using a 2D histogram of SPs in the filaments over time
[8]. Subsequently, eight biomarkers were determined for
the filaments: (i) mean duration (Ph-Md); (ii) standard
deviation of duration (Ph-SDd); (iii) mean frequency of
rotation around SPs in the filaments (Ph-Mf ); (iv) stan-
dard deviation of frequency (Ph-SDf); (v) average direc-
tion of rotation (+1 for clockwise and -1 for counterclock-
wise, Ph-MDR); (vi) filament rate over time (Ph-FlR); (vii)
mean spatial displacement (Ph-MFD); and (viii) standard



deviation of displacement (Ph-SDFD), defined as the av-
erage displacement in each sample, calculated using the
Euclidean distance between subsequent frames.

From the HM, 11 biomarkers were obtained: (i) num-
ber of regions (Ph-Nr); (ii) mean region size (Ph-Mrs); and
(iii) standard deviation of region sizes (Ph-SDrs). The area
of each region was determined as A, and the percentage
of SPs in each region (pSP) was calculated. From these,
the following biomarkers were obtained: (iv) mean per-
centage of SPs in relation to area (Ph-MSPA); (v) standard
deviation of this percentage (Ph-SDSPA); (vi) number of
detected SPs over time (Ph-SPS); (vii) percentage of SPs
in each of the four subdivisions of the HM for mechanism
localization; (viii) percentage of area occupied by regions
(Ph-HMrA). Additionally, individual heatmaps were gen-
erated for each filament (HMi), and the following biomark-
ers were calculated: (ix) mean region size (Ph-HMiS); (x)
mean SP density (Ph-HMiD); and (xi) mean area of the
bounding box around each region (Ph-HMiB).

Optical Flow: Farnebäck Optical flow [9], available in
the OpenCV library (v.4.5.4) for Python 3, were applied
on three different maps (phase, isochronous and isopoten-
tial maps), being applied to each pair of consecutive time
samples, obtaining the MVF. MVF was normalized and its
temporal average calculated (nMVF). After, curl and diver-
gent potential maps were obtained by: (i) Approximating
the partial derivatives in x and y directions. Sobel filters of
size of 11 × 11 pixels were applied to each component
of the nMVF, respectively nMV Fx and nMV Fy , pro-
viding the estimates of ∂(nMV Fx)

∂x ,∂(nMV Fy)
∂x , ∂(nMV Fx)

∂y ,
∂(nMV Fy)

∂y . (ii) Next, curl and divergent maps were ob-
tained using Equations below.

Div.Map =
∂(nMV Fx)

∂x
+

∂(nMV Fy)

∂y
(1)

Curl Map =
∂(nMV Fy)

∂x
− ∂(nMV Fx)

∂y
(2)

Then, for the curl maps, the average, the range and
the maximum absolute value was calculated, and for the
divergent maps, the average and the maximum value
was calculated, totaling 5 biomarkers for each of the
phase, isochronous and isopotential maps: average phase
curl (OF-PhCM), range of phase curl (OF-PhCR), maxi-
mum absolute of phase curl (OF-PhCMax), average phase
divergent (OF-PhDM), maximum phase divergent (OF-
PhDMax), average isochronous curl (OF-IsCrCM), range
of isochronous curl (OF-IsCrCR), maximum absolute of
isochronous curl (OF-IsCrCMax), average of isochronous
divergent (OF-IsCrDM), maximum of isochronous diver-
gent (OF-IsCrDMax), average of isopotential curl (OF-
IsCrCM), range of isopotential curl (OF-IsPCR), maxi-
mum absolute of isopotential curl (OF-IsPCMax), average

of isopotential divergent (OF-IsPDM), maximum of isopo-
tential divergent (OF-IsPDMax).

2.2. Biomarker Ranking and Classification

After computing the 44 biomarkers described above,
biomarker ranking was performed using three differ-
ent methods, and the scores were combined using the
quadratic sum of the scores, normalized by the greatest
value among the biomarkers. The ranking aimed to find
the best biomarkers to discriminate: (i) Each arrhythmia
from the remaining; (ii) each pair of arrhythmias; and (iii)
which atrium the mechanism is located (LA or RA).

The first ranking method used was based on the anal-
ysis of variance (ANOVA) F-score, which compares the
ratio between the variance of the mean for each class and
the variance of the entire dataset. Higher F-scores indi-
cate better classification performance. The second method
was based on Kendall’s τ coefficient, which is a suitable
correlation coefficient for both quantitative and qualitative
variables. The third method used Lasso’s (least absolute
shrinkage and selection operator) regularization for logis-
tic regression .

After biomarker ranking, the top two biomarkers for
each arrhythmia mechanism classification (MC) and the
top two biomarkers for mechanism localization (ML) were
selected, excluding redundant biomarkers based on their
Pearson correlation coefficient. The number of selected
biomarkers was chosen to avoid overfitting, considering
the size of the data-set. Logistic regression algorithms
from Scikit-Learn were used as classifiers, and the train-
ing and testing sets were divided using the leave-one-out
method.

3. Results and Discussion

The selected biomarker for each classification task and
the achieved accuracy while using it is showed in the Ta-
ble 3. By combining all classifiers, the MC obtained an
accuracy of 0.7272 for the BSPM analysis and 0.8636 for
the ECGi analysis. Based on the ranking and the selected
features, it could be seen that the novel OF biomarkers can
contribute to the characterization of the three of the most
common kinds of atrial arrhythmia, specially in the analy-
sis of BSPM, been the 7 top biomarkers when summing all
ranking scores. Also, the accuracy results suggest a ben-
efit from the ECGi to the characterization of arrhythmias,
however it depends on a longer and more computationally
costly process.

4. Conclusions

Non-invasive maps, such as phase, dominant frequency
and optical flow maps, allows extraction of biomarkers that



BSPM
Task Biomarker 1 Biomarker 2 Accuracy

AF/others Ph-SDSPA Ph-N r 0.7727
AFL/others DF-M Ph-Md 0.864
AT/others OF-IPDMa DF-Ms 0.773
AF/AFL DF-M Ph-Md 0.929
AF/AT Ph-N r OF-PhDMa 0.722

AFL/AT Ph-HMiD DF-M 0.917
LA/RA DF-Ms Ph-N r 0.727

ECGi
Task Biomarker 1 Biomarker 2 Accuracy

AF/others Ph-SDf OF-ICCMa 0.6818
AFL/others Ph-HMiD DF-Mo 0.909
AT/others Ph-FlR OF-IPCR 0.818
AF/AFL DF-IQROI DF-Mo 0.929
AF/AT DF-IQROI OF-ICCMa 0.889

AFL/AT DF-IQROI OF-IPCMa 1.000
LA/RA Ph-HMiD Ph-MFD 0.777

can be used in classifiers that discriminate atrial arrhyth-
mias and estimate the location of its mechanism. Also, the
analysis of the spatial dynamic of the signals with opti-
cal flow applied to reconstructed atrial signals, obtained
with ECGi, showed a great contribution to the location
of arrhythmic mechanisms, such as functional rotors and
ectopic foci, giving usefull information prior to the inva-
sive intervention. Analysis with BSPM and ECGi seems
to have a great potential in aiding the treatment and diag-
nosis of atrial arrhythmias.
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