Identification of the extent, severity and spatial location of acute myocardial ischemia by \mathbf{T} wave amplitude analysis

Jimena Rodríguez-Carbó, Ana Mincholé, Esther Pueyo
University of Zaragoza, Zaragoza, Spain

Background: ST deviation has been traditionally used to evaluate the severity of myocardial ischemia (MI) and the occlusion site. Although previous studies have also focused on the morphology of the T wave, we hypothesized that characterization of T wave amplitude (Ta) could improve ischemia detection and contribute to the identification of the occluded artery.

Methods: 12-lead ECGs from 102 patients undergoing prolonged percutaneous coronary intervention (PCI, $4.7 \pm 1.3 \mathrm{~min}$) due to stable angina pectoris were used to derive Ta . The total amount of change in Ta at the end of PCI, denoted as $\Delta \mathrm{Ta}$, was computed for each patient and lead. The distribution of occluded arteries was: LAD, 34; LCX, 21; and RCA, 47. Measurements of ischemia extent and severity were obtained from myocardial scintigraphic imaging in a subset of 35 patients (11 with and 24 without previous MI).

Results: Ta was highly sensitive to detect PCI-induced changes, with mean $\Delta \mathrm{Ta}$ over leads ranging from 21.4 to $241.2 \mu \mathrm{~V}$ and maximum $\Delta \mathrm{Ta}$ from 58.0 to $818.8 \mu \mathrm{~V}$. Mean $\Delta \mathrm{Ta}$ was significantly correlated with both ischemia extent ($\mathrm{r}=0.55, \mathrm{p}<0.05$) and severity ($\mathrm{r}=0.67, \mathrm{p}<0.05$), with such correlation being stronger than for mean $\Delta \mathrm{ST}$ deviation $(\mathrm{r}=0.52$ and $\mathrm{r}=0.63)$. The strength of the relationship between $\Delta \mathrm{Ta}$ and ischemia extent/severity was greater in patients with vs without prior MI ($\mathrm{r}=0.82$ vs $0.48 / \mathrm{r}=0.79$ vs 0.64). Additionally, $\Delta \mathrm{Ta}$ presented a distinctive lead profile as a function of the occlusion site, with the largest changes in V2-V4 for LAD occlusions, II, III and aVF for RCA and V2, V3 and III for LCX.

Conclusion: Ta shows high sensitivity to identify the extent and severity of PCI-induced ischemia, outperforming ST deviation. The spatial distribution of Ta can help to locate the occluded artery.

