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Abstract 

Aim: Approximately six million people suffer cardiac 

arrests worldwide per year with very low survival rates 

(<1%). Thus, the aim of this study is to estimate the 

probability of a poor outcome after cardiac arrest. 

Accurate outcome predictions avoid removing care too 

soon for patients with potentially good outcomes or 

continuing care for patients with likely poor outcomes.  

Method: The method is based on dynamical systems 

embedding theorems that show that a reconstructed phase 

space (RPS) topologically equivalent to an underlying 

system can be constructed from measured signals. Here the 

underlying system is the human brain after a cardiac 

arrest, and the signals are the EEG channels. We model 

the RPS with a Gaussian mixture model (GMM) and 

ensemble the output of the RPS-GMM with clinical data 

via XGBoost. 

Results: As team Blue and Gold in the Predicting 

Neurological Recovery from Coma After Cardiac Arrest: 

The George B. Moody PhysioNet Challenge 2023, our 

RPS-GMM-XGBoost method obtained a test set 

competition score of 0.426 and rank of 24/36. 

 

 

1. Introduction 

Of the six million cardiac arrests worldwide each year, 

less than 1% survive [1]. Thus, the objective of the 

Predicting Neurological Recovery from Coma After 

Cardiac Arrest: The George B. Moody PhysioNet 

Challenge 2023 is to predict patient outcomes after cardiac 

arrest [2]–[4], with a particular emphasis on finding 

methods that have low false positive rates; that is, we wish 

to avoid predicting a poor outcome when the patient will 

actually have a good outcome. Specifically, the challenge 

score is the true positive rate (TPR) when the false positive 

rate (FPR) was 0.05.  

The contributions of this paper are the application of a 

reconstructed phase space (RPS) Gaussian mixture model 

(GMM) XGBoost approach to analyze EEG signals for 

cardiac arrest patient outcome prediction. 

 

2. Literature Review 

There has been substantial research in predicting patient 

outcomes post-cardiac arrest. Examples include the work 

of Scarpino et al. who predicted outcomes after 12 and 72 

hours [5], Amorim et al. who used EEGs to predict poor 

functional outcome [6], and Tjepkema-Cloostermans et al. 

who used deep learning models to determine patient 

outcomes [7]. RPS-GMM based methods have been 

previously used to classify ECG arrhythmias [8]. 

 

3. Method 

We approach this problem from a dynamical systems 

perspective. Thus, the hypothesis posed here is whether a 

dynamical system model of the brain can accurately predict 

cardiac arrest outcomes. Specifically, we use a RPS-GMM 

approach [9] that is ensembled with clinical data via 

XGBoost.  

 

3.1. Preprocessing 

Because of the large size of the training dataset (1.5 

TB), it was not feasible to train the RPS-GMM-XGBoost 

on all the data. Thus, while the challenge dataset contained 

EEG, ECG, and other signals (SpO2, EMG, etc.), the RPS-

GMM-XGBoost method used only the EEG signals. 

Similarly, the training data set had up to 72 hours  (and 

sometimes more) of EEG signals, but we used the data 

from just hours 12, 24, 48, and 72. If a particular hour was 

missing, we used the next closest hour less than the desired 

hour, but greater than the next lowest hour. The RPS-

GMM-XGBoost method is robust against missing data, so 

training with missing data is handled appropriately as is 

classifying a patient with missing data. 

The full hour of the EEG signals is band-pass filtered 

with cutoff frequencies of 0.1 and 50Hz using a 10th order 

Butterworth filter. Then, all EEG channels are re-

referenced to the average of the channels. Next, as the 



signals have varying sampling frequencies, all signals are 

down sampled to 100Hz using Fourier resampling. 

The data set is further reduced to the last five minutes 

of each hour.  Finally, a subset of 10 channels are used as 

illustrated below in Figure 1. 

 

 

Figure 1. Electrode locations used by the RPS-GMM- 

XGBoost algorithm are highlighted in yellow. 

 

 

3.2. RPS-GMM Method 

RPS theory is based on the work of Takens [10], who 

showed that a space topologically equivalent to the phase 

space of a system can be constructed from one measured 

signal. Requirements for this theory are that the RPS be 

greater than twice the dimension of the original system and 

that the measured signal be twice continuously 

differentiable. Sauer et al. [11] extended Takens work by 

showing that the RPS need only be twice the dimension of 

the attractor in the original system's phase space and that 

the measured signal be only once continuously 

differentiable. The systems of interest such as the brain 

have very large dimensions, thus according to the Takens 

theorem the RPS would need to also be twice a very large 

dimension. In practice, lower dimensional RPSs will have 

self-intersections of the phase space trajectories but can 

still be effectively modelled using the techniques described 

next. 

The RPS-GMM method constructs a matrix from a 

signal.  Let x be a signal, xn be the nth sample from x, and 

N be the number of samples. Furthermore, let d be the 

dimension of the RPS and τ be the lag between samples. 

The RPS is an N-(d-1)τ by d matrix defined as 
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A point in the RPS is defined as 
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In this work, we use a dimension of four and a time lag of 

12. 

The distribution of the RPS is modelled with a GMM. 

Let µ be the center of one Gaussian mixture, ∑ be the 

covariance matrix describing the covariance between 

dimensions, and wm be the weight associated with one 

mixture. Let N be a Gaussian distribution, m be the index 

of a single Gaussian, and M be the number of mixtures. A 

GMM is defined as 

 

 ( ), , 1m m mw N m M=μ Σ . (3) 

 

There are three types of GMMs – spherical, diagonal, 

and full. The type of GMM is determined by the structure 

of the covariance matrix ∑. A full covariance GMM is a 

symmetric matrix where the off-diagonal values represent 

the covariance between different dimensions. We used 16 

full covariance mixtures in this work. 

To capture spatial and temporal features of the dataset, 

individual RPS-GMM models are trained. A GMM is 

estimated for each selected hour, channel, and outcome, 

i.e., four hours by 10 channels by two classes yields 80 

GMMs. For each training sample in each group, an RPS is 

generated. All RPSs belonging to a particular group are 

then concatenated together into a combined data matrix. A 

16 full covariance mixture GMM model is estimated using 

expectation maximization over the combined data matrix. 

To classify a test signal, an RPS is formed. The 

probability of a point in the RPS being generated by a 

GMM is 
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This is repeated for each of the 80 GMMs, i.e., each hour, 

channel, and outcome.  

The log likelihood of the test RPS is calculated by 

adding the log likelihood for each hour and channel for a 

particular class. Let c correspond to a channel, C be the 

number of channels, h correspond to an hour, H be the 

number of hours, n be a point in the RPS, and N be the total 

number of points in the RPS. Then the likelihood of 

outcome o is 
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The outcome is determined by maximum likelihood. 
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In summary, the RPS-GMM method forms a 

concatenated reconstructed phase space from the signals 

for each outcome. This is done for each hour, each channel, 

and outcome yielding 80 RPSs. A 16-mixture full 

covariance GMM is estimated on each RPS yielding 80 

GMMs. To classify a test signal, RPSs for each hour and 

channel are formed. The probability of each point in all 

RPSs is estimated. For each outcome, the sum of the log 

probabilities is calculated. The outcome with the greatest 

sum is selected. 

 

3.3. Clinical Data and Ensemble 

      An XGBoost model, with default hyperparameters, is 

used to incorporate clinical data and ensemble RPS-GMM 

models. XGBoost is used because of its training speed, 

strong performance across a broad set of problems, and 

tolerance of nan values for inputs. The XGBoost model is 

trained directly on the outcome and probability estimates 

from the trained RPS-GMM model concatenated with the 

clinical data including age, time to return of spontaneous 

circulation, sex, shockable rhythm, and whether the 

cardiac arrest occurred in or out of the hospital. Categorical 

clinical data is one-hot encoded.  

 

3.4. Implementation  

 The RPS-GMM-XGBoost algorithm is implemented in 

Python (3.8.6). The GMM package is PyCave (3.2.1), 

which builds on PyTorch and enables GPU based training. 

The code to build the reconstructed phase space is based 

on the NoLiTSA package. Signal processing code is from 

SciPy (1.10.1). 

 

4. Results 

The RPS-GMM-XGBoost method is evaluated at hours 

12, 24, 48, and 72 after the cardiac arrest. The scoring 

metric is based on the correct prediction of a good outcome 

while minimizing incorrect predictions of poor outcomes. 

This is the true positive rate when the false positive rate is 

0.05 with adjustments to take into account hospital 

variability. 

Table 1 presents the results of our RPS-GMM-XGBoost 

method.  

Hour Training Validation Test Ranking 

12 0.513 0.164 0.302 11/36 

24 0.589 0.239 0.465 9/36 

48 0.885 0.224 0.351 25/36 

72 0.982 0.463 0.426 24/36 

Table 1. True positive rate at a false positive rate of 0.05 

for hours 12, 24, 48, and 72 for training, validation, and 

test data sets. Also included is the ranking for each task. 

Our official challenge score and rank are 0.426 and 

24/36. The training set is publicly available. We submitted 

two entries for validation. The validation score presented 

is for our best scoring method. The test set results were 

evaluated once. All results were provided by the 

competition organizers; therefore, the training results are 

in-sample. 

The code to train and test our algorithm was submitted 

to the competition where it ran on a cloud based virtual 

machine. The code was allowed to run for 24 hours on a 

virtual machine with a GPU and 72 hours on a virtual 

machine with just a CPU. While the run time is unknown 

for the virtual machine, training on the 607 patients in the 

training set took 81 minutes, of which 46 minutes were 

loading and preprocessing the data, on a Windows 10 

computer with an eight core 3.59GHz AMD Ryzen 3700X 

CPU, an NVIDIA GeForce RTX 3060 Ti GPU, and 64 GB 

of RAM. Some multiprocessing and GPU acceleration was 

unable to be incorporated into the official submission, so 

virtual machine training took significantly longer. 

 

5. Discussion 

The RPS-GMM-XGBoost algorithm has results as high 

as the 75th percentile rank for hour 24 and as low as the 30th 

percentile rank for hour 48.  It is interesting to note that on 

the test set our algorithm would have performed better if 

we ignored all data after the 24th hour. Another interesting 

point to note is that our in-sample results for hour 72 are 

0.982 or nearly perfect. Comparing this against both the 

validation and test sets strongly suggests that we are 

overfitting our model.  

Given the size of the data set and computing resources 

we had available for model development, we used only a 

fraction of the data that is available. Model training used 

only 4 hours out of 72, 5 minutes out of 60, and 10 channels 

out of 19. We down sampled to 100Hz. Assuming that the 

average sampling rate was originally 300Hz, we used 

approximately 0.08% of the available training data. Even 

still more than half the training time is spent loading data. 

While it is likely that using more training data will improve 

results, we need to investigate why our training results are 

so much better than our test results and why our 24 hour 

results are better than our 48 and 72 hour results. 

An alternative technique expanded on the features used 



in the XGBoost ensemble; it included as parameters the 

outcome probabilities of each of the 80 RPS-GMM models 

and added average band power signals for each of alpha, 

beta, delta, and theta waves for each channel and hour with 

frequencies 8.0-12.0Hz, 12.0-30.0Hz, 0.5-4.0Hz, 4.0-

8.0Hz, respectively. Preliminary evaluation of the 

enhanced technique on the publicly available training set 

suggested improved performance over the scoring model 

with a challenge score of 0.571 on an 80/20 train/test split. 

This model was submitted for official scoring, but did not 

score. 

An alternative preprocessing technique was evaluated.  

The least variant five minutes are selected from the chosen 

hour, by omitting any data points belonging to any half-

second window with less than a threshold of 5 µV peak-to-

peak variance, then selecting from the remaining data the 

contiguous 5-minute window with the least peak-to-peak 

variance. Experimentally, choosing the last five minutes 

performed better when used for the RPS-GMM-XGBoost 

model. 

Three deep learning models were considered. The first 

model is a 1-dimensional convolutional neural network 

(CNN), convolving a kernel of length five with a stride of 

two across all channels. The second model consists of 25 

Conv2DLSTM neurons in sequence. A final model first 

ran a 2-dimensional CNN model across all channels for 

each time point, for each hour; the weights for the CNN 

model are shared across each hour, and outputs from each 

hour’s CNN model are then passed to an LSTM layer. The 

Conv2dLSTM and stacked CNN-LSTM models failed to 

converge. The 1D-CNN model converged but is 

computationally expensive and performed substantially 

worse than the baseline model. 

 

6. Conclusion 

The RPS-GMM-XGBoost method is able to predict 

patient outcomes at 72 hours with a TPR of 0.426 and at an 

FPR of 0.05. While this method is not the best method in 

the PhysioNet 2023 Challenge, it shows that dynamical 

system approaches should be considered as a component 

of a cardiac arrest outcome prediction system. Because of 

the large data set size and training time limits, we were 

unable to use the complete data set. Future work is to 

include more of the data set in the analysis and incorporate 

the RPS-GMM-XGBoost approach as part of an ensemble. 
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