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Abstract 

Impedance cardiography (ICG) is a non-invasive, 

continuous technique for assessing cardiac parameters 

such as stroke volume and cardiac output. By recording 

ICG data on the upper left-arm along the brachial artery, 

a wearable sensor device could offer trend-based cardiac 

contractility indicators. Data from seven healthy cases 

were analysed, comparing simultaneous thoracic and arm 

ICG recordings, assisted by respective simultaneous 

recording of chest ECG Lead I data. Three linear, real-

time, denoising methods were tested: an optimized 

Butterworth IIR, a 3rd order Savitzky-Golay FIR, and their 

combination. The combined approach consistently 

outperformed, exhibiting higher denoising performance 

metrics (p, RMS, SNR), which with an additional non-

linear recursive signal-averaging denoising process, it 

provided accurate estimation of the cardiac stroke volume 

(SV), derived from Arm-ICG waveform extracted features 

(B and VET). This pilot study revealed a linear regression 

model for predicting conventional thoracic SV from 

estimated non-conventional arm SV, with a promising 

coefficient of determination (R2) value of 0.796, in support 

for a versatile long-term wearable device method for CO 

monitoring in HF and AF affected patients. 

 

1. Introduction 

     According to the World Health Organisation 

cardiovascular diseases (CVD) are the leading cause of 

death worldwide, amounting to approximately 17.5 million 

deaths annually. Arrhythmias are defined as a transient 

abnormal heart rhythm and play a key role in diagnosing 

heart disease. They also have significant prognostic 

benefits [1]. There are several types of arrhythmias, some 

more common than others. The most frequently diagnosed 

cardiac arrhythmia is known as Atrial Fibrillation (AF) and 

is strongly associated with increasing the risk of patients 

suffering from a stroke. Another most common CVD is 

Heart Failure (HF), which is mutually causative with AF 

[2, 3], and can by non-invasively assessed by means of 

bioimpedance sensing methods [4]. For diagnostic 

purposes, CVD’s can be assessed using hemodynamic 

parameters such as stroke volume (SV) and Cardiac Output 

(CO). Current methods of measuring these parameters are 

either highly invasive or discontinuous. Impedance 

cardiography (ICG) offers continuous monitoring in a non-

invasive manner which can derive specific hemodynamic 

parameters relating to the contractility of the heart, to 

identify any acute HF state and also diagnose life 

threatening arrhythmias [4]. Traditionally, ICGs are 

recorded using the transthoracic approach whereby 

electrodes are placed on a patient’s thorax and neck [5]. 

However, in recent years, researchers [6] have reported the 

recording of ICGs using different points on the arm and 

comparing the results with those from thoracic placement. 

    It is important to note that when using ICG as a 

monitoring method, results are usually affected by signal 

noise. Thoracic ICG sensing methods generally pick up 

noises such as respiration noises, motion noises and poor 

electrode contact related noise. Arm ICG’s are usually 

contaminated by motion noises, or noises associated with 

poor electrode contact, but are less likely to be affected by 

respiration noises [6]. Thus, it is vital to apply effective and 

robust real-time denoising filters, in order to provide a 

reliable ICG waveform which doctors can recognise and 

utilise for accurate diagnostic purposes [7]. The brachial 

artery ICG waveform can provide an alternative CO 

monitoring approach, by sensing it from the upper left-arm 

and process it to derive important cardiac hemodynamic 

indicators for the early diagnosis of HF or corroborate 

acute AF detection, or their treatment follow up [2].  

     If conventional thoracic ICG and ECG are recorded 

simultaneously with upper-arm ICG, a comparative 

assessment of the non-conventional Arm-ICG, and ICG 

metrics functional relationships of Thorax-ICG vs Arm-

ICG can be modelled for clinical use. A variety of filters 

such as a Butterworth filter, a Savitzky-Golay (SG) filter, 

or a recursive averaging process [8], may be sufficiently 

effective to denoise the Arm-ICG signal to enable reliable 

ICG waveform metrics for CO monitoring. 

 

2.0  Methods 

2.1   ICG and ECG Data  

The subjects dataset to study the accuracy of the ICG 

recorded on the left upper-arm, was gathered using a 

BioPac wireless ICG and ECG simultaneous recording 

system devices (BioPac Inc, California, USA) and their 

developed software, Acqknowledge 5.0. All subjects 

within this study were healthy volunteers from the research 

group at NIBEC, Ulster University. The subjects age range 

was between 23-54 years and the average age was 36 years. 

Within the subjects, 57% were female, and 43% were male. 



Each subject case recording duration was fixed to a total of 

480 seconds, at a sampling rate of 2 kHz. Each subject had 

one arm recording and one thoracic recording, both with 

simultaneous ECG recordings. Table 1 presents the study 

subjects sample baseline demographic characteristics. 
 

   Table 1. Patients sample demographics baseline. 
 

Casse 

# 

Gender % 

Female: 57 

Male: 43 
Age Weight 

(kg) 
Height 

(cm) 
BMI 

(Kg/m2) 

Waist 

(cm) 

L  

Upper-arm 

length (cm) 
1 M 54 76 175 24.8 93 21 
2 F 23 59 164 21.9 76 21 
3 F 41 76 153 32.5 100 19 
4 F 26 62 172 21.1 72 24 
5 F 25 70 169 24.7 77 23 
6 M 43 80 161 30.9 107 23 
7 M 39 61 170 21.1 77 29 
 Mean  35.9 69.1 166.3 25.3 86.0 22.9 

 (±SD) (11.5) (8.49) (7.52) (4.67) (13.81) (3.18) 

 

    The ECG signal was used to extract the alignment time 

for signal averaging processes. A deterministic feature of 

ventricular depolarization was timed from the QRS 

complexes in the ECG data.  

 

2.2    ICG and ECG Prefiltering Process 

Both the ICG and ECG signals are subjected to noise 

and therefore prefiltering was a critical stage throughout 

this study. ICG signals, recorded from both the upper-arm 

and the thorax, were denoised using three linear digital 

filtering IIR and FIR processes, and their combination. 

Process 1: The signals were denoised using a 1st order high-

pass Butterworth IIR-filter at 0.5Hz cut-off frequency 

followed by a 4th order low-pass Butterworth IIR-filter at 

8Hz cut-off frequency. MATLAB coding was used to 

apply this technique. Process 2: The signals were denoised 

using a 3rd order SG FIR-filter with a window length of 351 

samples. The frequency response of this particular SG 

filter design, suitable for human ICG waveform signal 

treatment [8], is shown in Figure 1, presenting low-pass  
 

 

 
 

 

  Figure 1. Frequency response magnitude (dB) of SG FIR 

filter design for ICG waveforms: 3rd order, 351 points size 

characteristics with a -3 dB cutoff frequency at 0.61 Hz and 

reaching 40 dB attenuation level at 20 Hz with a 5 dB 

ripple amplitude. These frequency response profile aids in 

the suppression of noise and high-frequency fluctuations. 

Process 3: the signals were denoised using a combination 

of the band-pass Butterworth IIR-filter and the 3rd order 

SG FIR-filter. The denoising performance metrics of the 3 

processes ere analysed and compared for selecting the best 

process. ECG signals on each case were conditioned using 

a Butterworth 1st order 0.5Hz high-pass followed by 2nd 

order 40Hz low-pass filters. 
 

2.3   ICG waveform vector quality criteria 

For each of the subject cases, pre-filtered 700ms ICG 

beat frames, on a beat-by-beat (BbyB) basis, were 

correlated using the Pearson Correlation coefficient (p), 

with the absolute reference 700ms frame (gold standard, 

“noiseless” ICG waveform vector), obtained by a 

conventional SAECG process [1], hence SAICG. Thus, the 

mean of computed p values for every incoming ICG beat 

frame (700 ms), was used as a denoising performance 

metric, for comparison of the 3 filtering processes. In this 

study, a correlation p threshold value above 0.701 or or 

1/ √2 (-3 dB point) was used for BbyB acceptance of 

reasonable quality incoming ICG frame vectors. In 

addition to this, the noise RMS and the Signal to Noise 

ratio (SNR) metrics values were calculated for each 

accepted ICG beat frame vector, and their mean values 

were used later to assess the ICG waveform feature metrics 

(B and VET) accuracy and precision [8]. 
 

2.4   ICG waveform features metrics 

An ICG signal averaging process, using chest ECG 

Lead I R-wave detection time event as the alignment time 

reference extraction using the SFP technique [8], enabled 

the determination of an absolute (noiseless) reference 

700ms ICG vector frame. Then, two main ICG waveform 

feature metrics were determined to further characterise the 

denoising performance of each filtering process: 1, 2 and 

3. The ICG waveform metric B, is the ICG main pulse peak 

amplitude level (Ω/s) measured on the signal averaged 

Arm-ICG and Thorax-ICG. The left ventricular ejection 

time (generally termed with the acronym VET), is the ICG 

waveform parameter (ms) needed to calculate the SV [8]. 
 

3. Results 

3.1 FIR-filter and IIR-filter performance  

     The FIR-IIR filter combination was implemented and 

further supported by a 16th order recursive averaging 

process (RAv16) [8]. The Pearson correlation coefficient 

(p) was used as a denoising performance metric of these 

filtering processes. The absolute reference 700 ms window 

was correlated with each incoming beat, for each case. This 

allowed for the mean value of p to be computed for each 



case. The beat inclusion rate percentage (BIR%) was also 

calculated by including beats which had p values above the 

0.701 threshold. Table 2 presents the mean p value and 

mean BIR% for the 7 cases, for both arm and thorax ICG. 

These results indicate that the cascaded combination of IIR 

and FIR filtering yielded Arm-ICG waveforms, which in 

average correlated higher with the absolute noiseless 

reference signal, hence, the most effective filter process. 
 

Table 2. ICG denoising processes performance on Thorax-

ICG and Arm-ICG, on the 7 subjects: mean (±SD) of p and 

BIR% metrics means in each subject, on a BbyB basis. 
 

 
 

    Additional metrics for denoising performance are the 

noise root mean square (RMS) and signal-to-noise ratio 

(SNR) mean values for all 7 cases, as presented in Table 3 

for each filtering process. Again, from these metrics 

perspective, the highest denoising performance was for the 

Butter8Hz + S,Golay combined denoising Process 3. 
 

Table 3. Arm-ICG denoising processes performance on the 

7 subjects:  mean (±SD) of SNR and RMS (Ω/s) metrics, 

mean values in each subject, on a BbyB basis. 
 

Denoising Metric 
Butt8Hz   

(IIR) 

S-Golay  

(FIR) 

Butt8Hz+SG 

(FIR) 

Raw signal    

(no pre-filter) 

Mean SNR 

(±SD) 

9.74 

(±11.2) 

7.85 

(±9.53) 

12.46   

(±14.4) 

0.75       

(±0.99) 

Mean RMS (Ω/s) 

(±SD)  

0.09 

(±0.03) 

0.09 

(±0.03) 

0.08 

(±0.02) 

0.48 

(±0.28) 

 

3.2      Functional Relationship Arm vs Thorax 
 

Although the combined IIR-FIR filtering method proved 

satisfactory for ICG denoising, the quest for enhanced 

accuracy and precision in ICG waveform feature metrics 

prompted the application of the advanced RAv16 

denoising process, as described in [8]. This iterative step 

was implemented for assessing the functional relationships 

between the Thorax-ICG and Arm-ICG waveform metrics: 

B, VET, and calculated SV values, are here assessed using 

scatter plots with respective coefficient of determination 

(R²) of the linear regression model, as depicted in Figure 2. 

     The additional RAv16 denoising treatment led to 

remarkable insights into the thorax (conventional) versus 

arm (non-conventional) metrics prediction modelling. 

Specifically, the correlation coefficients were 0.97 for 

Metric B, 0.95 for Metric VET, and 0.89 for Stroke 

volume, signifying a high degree of interdependence. 

Furthermore, the above 0.80 values of R², support the 

goodness of the estimated linear regression models. 
 

 
 

  
 

 
 

Figure 2. Scatter plots of Thorax versus Arm ICG 

waveform features B, VET metrics and estimated SV mean 

values, after ICG denoising with Process 3 and RAv16, and 

respective linear regression models with their R² values. 
 

    These findings outline the potential clinical use of the 

alternative, easier to practice, Arm-ICG methods for 

monitoring cardiac hemodynamic indicators using a 

wearable armband device for acute HF and AF detection. 
 

4. Discussion  
 

     This study aimed to investigate various aspects of 

denoising and analysing impedance cardiography (ICG) 
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(±0.02) 
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(±0.02) 

98  

(±0.02) 

BIR% mean: Arm-ICG 

(±SD) 

92  

(±0.06) 

91  

(±0.06) 

93  

(±0.06) 



waveforms. Denoising performance of three proposed 

linear pre-filtering processes (real-time) were assessed 

using various parameters: p, BIR%, SNR and RMS. The 

combined IIR-FIR (Butter8Hz+S.Golay) process was 

clearly the consistently best linear denoising process. 

 The analysis of key metrics (Metric B, Metric VET, and 

Stroke volume) using an additional non-linear, advanced 

ICG recursive averaging 16th order denoising process 

(RAv16) [8], which is also possible to operate at real-time, 

but with certain delay (16 ICG beats), for arm-ICG and 

thorax-ICG data, reveals promising paired metrics linear 

relationships, with promising coefficient of determination 

(R2 > 0.80) linear regression modelling, also presenting 

high Pearson correlation coefficients (p > 0.89), as 

presented in Figure 2. Nevertheless, there are notable 

differences on p and BIR% denoising performance metrics 

mean values (see Table 2), using the selected Process 3 

(best performing), with arm-ICG showing consistent lower 

values than thorax-ICG; as a result of the higher noise level 

present in arm-ICG recordings. These findings highlight 

the importance of considering data quality challenges 

associated to ICG sensing anatomical location choice in 

clinical and research applications.  

     The second branch of study investigated the 

relationship between thorax and arm stroke volume. 

Revealing promising linear proportionality between these 

estimated volumes, using established Kubicek’s formula 

and ICG waveform extracted feature metrics data (B and 

VET). However, the scope of this pilot study is limited by 

the low sample size of 7 subjects and no cardiac patient 

groups were considered; only healthy volunteers with 

reasonably wide demographic characteristics. 

     In brief, this study delved into denoising and analysing 

ICG waveforms, revealing effective real-time filtering 

techniques, metric correlation methods, and establishing 

SV relationships at pilot study level of confidence. The 

study ultimately contributed to refining VET estimation 

and establishing the relationship between arm and thorax 

SV. This research enhanced understanding of feasible 

practical applications of brachial artery based alternative 

ICG measurements, offering insights for medical practice. 

 

5.  Conclusions  
 

      In relation to the observed Pearson correlation 

coefficients in our discussion, the robust positive 

relationships between the evaluated metrics (B, VET, and 

Stroke volume) when additional RAv16 denoising process 

is applied underscore the reliability and clinical 

significance of this study's insights. The good correlation p 

values further validate the evidence-based potential for 

real-world applications in non-invasive health monitoring 

using armband ICG sensors. Our comprehensive approach 

enhances the credibility and relevance of our findings, 

reinforcing their importance in advancing cardiovascular 

disease diagnosis and continuous cardiac hemodynamic 

indicators monitoring in healthcare. 

       This pilot study offers compelling evidence that points 

towards a promising direction for non-invasive, continuous 

health monitoring using armband sensors for ICG 

measurements. By employing a comprehensive approach 

involving Pearson correlation, RMS, and SNR analyses, 

the study successfully identified the convenient electrode 

placement for upper-arm ICG, ensuring the reliability of 

measurements. The application of Butterworth-IIR and 

Savitzky-Golay-FIR filtering techniques achieved good 

Pearson correlations (> 0.701) for both arm and thorax-

ICG, thus, significantly enhancing waveform quality.   

Additionally, the study confirmed a robust linear 

regression relationship (𝑅² = 0.80) between arm and thorax 

stroke volumes, bridging critical knowledge gaps related 

to combined filtering efficacy and specific metric 

calculations. These findings have wide-ranging 

implications, particularly in advancing non-invasive, long-

term, health monitoring and the diagnosis of 

cardiovascular diseases.  
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