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Abstract

During fetal development, ductus arteriosus allows
blood ejected by the right ventricle to bypass the lung.
The persistence of this ductus after birth however is con-
sidered pathological and is termed patent ductus arte-
riosus (PDA). Using phonocardiograms (PCGs) acquired
from a digital stethoscope, the objective is to explore dis-
criminatory features and statistically analyse them. In
this research, we obtained 48 PCG recordings from 41
neonates. 17 recordings (15 neonates) had PDA, 8 record-
ings (7 neonates) had other heart structure abnormali-
ties identified during echocardiography and were excluded
in this study, and 23 recordings (21 neonates) had no
heart structure abnormalities based on clinical assess-
ment. Recordings were denoised using non-negative ma-
trix co-factorization. Denoised phonocardiograms were
then segmented into S1, systolic, S2, and diastolic peri-
ods. Temporal (durations and maximum values), statisti-
cal (variance, skewness, and kurtosis), and power (total
power, and 25-100 Hz, 25-45 Hz, 45-80 Hz, 100-200 Hz,
and 200-400 Hz band powers) were obtained for each
heart segment and relative ratios between segments cal-
culated. Statistical tests were then performed to identify
significant features for discriminating PCG recordings.

1. Introduction

Accurate and timely assessment of neonatal health is
of paramount importance, particularly when it comes
to detecting life-threatening conditions such as cardio-
respiratory diseases [1]. The traditional method of using
a stethoscope to record chest sounds has been a mainstay
in neonatal care, but recent advancements have introduced
digital stethoscopes with tailored Artificial Intelligence
(AI) for newborns [2–5]. While these innovations hold
promise, the neonatal intensive care environment presents
unique challenges, including heightened levels of ambient
noise compared to adult and pediatric wards. These chal-

lenges have, in turn, resulted in suboptimal chest sound
recordings and inaccurate assessments of critical parame-
ters such as heart rate and breathing rate [6].

The sources of noise interference in neonatal phonocar-
diograms (PCGs) are multifaceted, encompassing exter-
nal and background noise [7], cross-interference between
heart and lung sounds, as well as internal sounds like bowel
movements, gastric reflux, and air swallow. Additionally,
the noise introduced by respiratory support equipment fur-
ther complicates matters. To ensure accurate assessment
and diagnosis, it becomes imperative to address and mit-
igate these sources of interference, effectively separating
heart and lung sounds from extraneous noise [8].

The persistence of the duct beyond the 72-hour mark
is considered pathological and falls within the spec-
trum of CHD, characterized as Patent Ductus Arteriosus
(PDA) [9–13]. Detecting PDA and other CHDs, particu-
larly within the first three days post-birth, holds paramount
importance as it enables efficient allocation of limited
echocardiography resources and minimizes the risk of
missing PDA-related CHDs. Despite being a cost-effective
and reliable screening tool, auscultation’s subjective na-
ture, dependent on the assessor’s auditory acuity and ex-
pertise, poses challenges. AI can bridge this gap by pro-
viding an objective interpretation of heart sounds, comple-
menting traditional auscultation methods [14].

In the pursuit of achieving clarity and precision in
neonatal PCGs, researchers and clinicians have explored
various denoising and sound separation methods, which
can broadly be categorized into multichannel and single-
channel approaches.

In contrast, limited attention has been directed towards
automated PCG classification in the pediatric population,
and even fewer studies have delved into the challenge of in-
terpreting PCGs in newborns. Some noteworthy contribu-
tions include a statistical analysis of various features aimed
at the automated detection of PDA murmur [15]. Overall,
this study aimed to select features of importance for PDA
detection using neonatal PCGs.



2. Methods

2.1. Data Collection

41 neonatal PCG recordings were obtained from
Monash Children’s Hospital. Among these, 17 record-
ings (from 15 neonates) were identified as having PDA,
a condition of particular interest in this study. Addition-
ally, 8 recordings (from 8 neonates) exhibited structural
abnormalities in the heart, as confirmed by echocardiog-
raphy, but unrelated to PDA. These recordings were ex-
cluded from the analysis. The remaining 23 recordings
(from 21 neonates) displayed no heart structure abnormali-
ties based on clinical assessments and were considered part
of the healthy control group.

2.2. Data Preprocessing

To prepare the PCG recordings for analysis, a series of
preprocessing steps were employed. These included de-
noising using the non-negative matrix factorization (NMF)
technique, which effectively removed extraneous noise
sources such as lung sounds, respiratory support interfer-
ence, and other environmental noises [16, 17]. This de-
noising process was crucial for isolating the relevant heart
sounds for further analysis. Figure 1 shows the sample
outcome result of the NMF method sound separation [17].

Figure 1. Example of NMF Sound Separation

2.3. Signal Segmentation

The denoised PCG recordings were then segmented into
four distinct cardiac periods (Figure 2): S1, representing
the first heart sound; systolic, covering the period from S1
to S2; S2, representing the second heart sound; and dias-
tolic, encompassing the period after S2. This segmentation
allowed for the extraction of specific features from each of
these cardiac phases based on our previous work [18].

Figure 2. Example of Heart Sound Segmentation

2.4. Feature Extraction

Based on Gomez et. al. [19] 67 features were obtained
from S1, systolic, S2, and diastolic periods. Various fea-
tures were extracted from each of the segmented cardiac
periods based on:

• Temporal Features: These included measures such as
durations and maximum values for each of the four car-
diac periods. These temporal attributes captured the time-
related characteristics of the heart sounds.
• Statistical Features: Statistical properties like variance,
skewness, and kurtosis were computed for each cardiac
period. These statistics provided insight into the distribu-
tion and shape of the heart sound signals during different
phases of the cardiac cycle.
• Power Features: Power spectral analysis was performed
to quantify the frequency content of the heart sounds. Total
power, as well as power in specific frequency bands (25-
100 Hz, 25-45 Hz, 45-80 Hz, 100-200Hz, and 200-400Hz),
were calculated for each cardiac period. These power fea-
tures offered insights into the spectral characteristics of the
heart sounds [18].

2.5. Feature selection

In total, 1087 features were extracted. Additionally, the
p-values resulting from statistical tests the t-test and Mann-
Whitney tests, with respect to normality tests, were uti-
lized to assess the significance of features in distinguish-
ing between PDA and healthy heart sounds. The Bonfer-
roni method was used to adjust the p-value (Confidence
Interval 95%). MATLAB and Python software were used
for the analysis of the data. Table 1 describes each feature
extracted for further analysis.



Table 1. Features Extracted from the Heartbeat Cycle
Feature Description
cwt morlet feature Features based on continuous

wavelet transform using Morlet
mother wavelet

mfcc features Features based on Mel Fre-
quency Cepstral Coefficients
(MFCCs)

power ratio max Dia Ratio of maximum power to to-
tal power in the diastolic region

audio lpc10 9 S2 Linear predictive coefficients
for S2 sound

bobillo feature Set of heartbeat segment fea-
tures represented in a 4-way
tensor which is decomposed
and compressed to get the most
discriminating parameters.

sd IntDia Standard deviation of diastolic
interval timing

m mean SYS Mean value in the systolic pe-
riod

audio lsf6 4 Sys Line spectral frequencies for
systolic interval

n broken s2 Number of discontinuities on
the derivative of the signal in
the S2 wave

mean IntDia Mean value of diastolic interval
timing

3. Results

Table 2 shows the t-test and its non-parametric counter-
part, Mann-Whitney, were used for ranking the statistical
significance of each feature based on their p-value. Among
1087 features only 30 features were in the confidence in-
terval of 95%, which was concluded as statistically signif-
icant. The top 10 features’ details are reported in Table 2.

Features of cwt morlet features 219, mfcc features 96,
and cwt morlet features 179 are the most significant. Fig-
ure 3 shows the pattern of significance in selected features.

4. Discussion and Conclusion

In our study, we performed the NMF method in the con-
text of neonatal chest sound separation, particularly for
the detection of PDA. We utilized a large set of features
from time and frequency domains to assess the level of
their relevance for the considered tasks. Many of these
features have been previously used for heart sound assess-
ment [20, 21]; others have been introduced here. The ex-
tracted features describe the data within four different seg-
ments of a cardiac cycle. From the results, the majority

Table 2. Top 10 Most Statistically Significant Features
Mean Values for PDa and No PDA (p-value<0.02)

Feature PDA No PDA
cwt morlet features 219 −2.48e−1 −5.46e−1

mfcc features 96 −2.26e3 −2.54e3

cwt morlet features 179 −3.66e−1 −5.23e−1

cwt morlet features 218 −4.26e−1 −6.02e−1

mfcc features 253 −1.12e1 −1.32e1

power ratio max Dia 2.77e−1 2.38e−1

audio lpc10 9 S2 1.94e−1 2.51e−1

bobillo features 16 9.00e−2 6.12e−1

cwt morlet features 220 4.60e−2 4.17e−1

mfcc features 200 1.45e1 1.63e1

of the most important features tend to describe the tempo-
ral and power content from cwt morlet features 219 and
mffc feature 232. The small sample size is a limitation as-
pect of this study.
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