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Abstract 

The aim of our work (Univ_Pittsburgh) was to explore 

the feasibility of using a convolutional neural network 

(CNN), with a reduced set of EEG channels, fused with a 

Random Forest to predict coma patient outcomes. This 

work is part of the ‘Predicting Neurological Recovery from 

Coma After Cardiac Arrest: The George B. Moody 

PhysioNet Challenge 2023’. 

A 1D-CNN based on the ResNet-18 model was used to 

detect specific patterns in the EEG unique to either a good 

or poor outcome for the coma patient. To reduce 

dimensionality, electrodes were grouped into 5 regions. 

The CNN was fused with a Random Forest trained on 

patient features. 

The CNN and Random Forest model achieved True 

Positive Rates (TPRs) of 0.50 +/- 0.09  using 5-fold cross 

validation within the training set, 0.809 on the training set, 

0.448 on the validation set, and 0.530 on the test set. Our 

team ranked 14th out of 36 teams. 

This work demonstrated the feasibility of grouping EEG 

channels to reduce dimensionality in the prediction of 

coma recovery. Future work should explore the use of 

different model architectures with the reduced set of EEG 

channels to achieve even higher performance. 

 

1. Introduction 

It is common for patients who have been resuscitated 

from cardiac arrest to remain in a coma [1,5-8]. Many of 

these patients have a poor outcome resulting in either 

severe neurological impairment or death but others and can 

recover and regain independence in their daily life [7]. 

Prognostic tests to discriminate between good and poor 

patient outcomes are imperfect and decisions on life 

support withdrawal should be delayed more than 72 hours 

[7]. This provides an opportunity for machine learning to 

increase prognostic accuracy or reduce the necessary 

decision time whether to withdraw life support. 

EEG has been used to help predict poor outcomes of 

comatose patients following cardiac arrest [5-9]. EEG is 

highly dimensional, making it memory intensive and time 

consuming to interpret. In order to reduce dimensionality, 

most works have extracted temporal features [5-9], while 

others have explored additional spectral and entropy 

features [5]. Discrete features may capture useful 

information but may miss some of the temporal 

significance that is found in continuous EEG [7].  

Some works have attempted to capture temporal 

changes in the EEG by either using raw EEG in a neural 

network [6] or by taking discrete measurements at multiple 

time points [7,8]. One group found that aEEG and 

suppression ratio are very highly correlated spatially and 

can therefore be averaged across channels to remove noise 

and allow for greater temporal resolution [7,8]. In other 

fields using EEG, the EEG signal has been collapsed 

spatially by grouping the channels into regions [10] or by 

using techniques like PCA [11]. 

One work found an improvement in classifying poor 

outcomes by employing a multi-modal approach, using 

both continuous EEG data and discrete features [6]. 

In this work, we propose reducing spatial 

dimensionality by taking the median of EEG signals within 

the same brain region. This technique aims to help with 

both filtering out artifacts and reducing dimensionality 

while maintaining high temporal resolution. Furthermore, 

we also leverage the multi-modal approach of using both 

continuous EEG data and discrete patient features to 

improve prediction of good or poor patient outcomes. 

 

2. Methods 

This work incorporates a hybrid model approach that 

fuses the predictions from a convolutional neural network 

(CNN) and a Random Forest. The CNN is trained on 

continuous EEG data and the Random Forest is trained on 

patient information. 

 

2.1. Data and Preprocessing 

This work is a part of the 2023 PhysioNet Challenge [1-

3]. The data used in this work is from the I-CARE EEG 

database [2], collected from seven hospitals in the U.S. and 

Europe . There were 1020 total patients in the dataset, each 

who had return of spontaneous circulation (ROSC) after 

cardiac arrest but remained comatose. Included in this 



work were 19-channel EEG recordings from each hour 

following ROSC up to 72 hours and several patient-

information features. These features were age, sex, time 

from cardiac arrest to ROSC, if it was an out-of-hospital 

cardiac arrest (OHCA), if heart rhythm was shockable, and 

targeted temperature management (TTM) temperature. 

The labels for the data were Cerebral Performance 

Category (CPC) scores ranging from one to five with one 

being the best patient outcome and five being death. The 

labels were converted to a binary outcome with CPC scores 

one or two labeled as good and CPC scores three, four, and 

five labeled as poor. 

For any hour containing multiple EEG recordings, the 

longest recording was kept, and all others were discarded. 

Starting with the last available hour of EEG data, any EEG 

channel with a standard deviation of zero was removed. 

The remaining EEG data was resampled to 128Hz. Next, 

the EEG data was bandpass filtered from 0.5 to 30Hz using 

a hamming-window finite impulse response filter [6]. 

Baseline drift was removed from each channel by 

subtracting the median amplitude. The channels were 

grouped into five different regions: (1) left anterior, (2) 

right anterior, (3) left posterior, (4) right posterior, (5) all. 

The channels were grouped by taking the median signal of 

all available channels within the region. Table 1 provides 

the channels that were included within each region. 

 

Region Channels 

Left Anterior Fp1, F7, F3, Fz, T3, C3, Cz 

Right Anterior Fp2, F8, F4, Fz, T4, C4, Cz 

Left Posterior O1, T5, P3, Pz, T3, C3, Cz 

Right Posterior O2, T6, P4, Pz, T4, C4, Cz 

All Fp1, Fp2, F7, F8, F3, F4, 

Fz, T3, T4, T5, T6, C3, C4, 

Cz, P3, P4, Pz, O1, O2 

Table 1. EEG Channel Groupings. The 19-channel EEG 

data was reduced to 5 channels by taking the median 

signal within each of these regions. 

 

Once the EEG data was grouped into five channels, the 

data was segmented into 2500-point windows 

corresponding to about 19.5s segments. Any absolute-

valued windows that contained at least 1250 consecutive 

points less than 1e-3 uV in channel five were removed. The 

EEG data was then normalized by dividing each channel 

by their absolute maximum amplitude. If the number of 

kept windows was less than ten, the entire hour of data was 

skipped, otherwise it was saved. This process was repeated 

for the training set until either two hours of data were 

preprocessed or no more EEG data was available. In the 

validation/test sets up to six hours of data were 

preprocessed. The data was concatenated across the 

preprocessed hours so that the dimensions of the data were 

number of windows x 5 channels x 2500 datapoints. Table 

1 provides a summary of all of the patient data that was 

included for a Random Forest. The sex variable was 

converted to three separate binary variables: male, female, 

other. Any missing patient features were imputed using the 

mean values across all patients in the training dataset. 

Table 1. Training Data Patient Information. 

 

Patient Feature Mean (± std) or Count (%) 

Age (years) 61.17 (±15.6) 

Sex Male: 417 (68.7%), 

Female: 187 (30.8%), 

Other: 3 (0.5%) 

ROSC (minutes) 23.13 (±13.3) 

OHCA True: 566 (93.2%),  

False: 41 (6.8%) 

Shockable Rhythm True: 575 (94.7%),  

False: 32 (5.3%) 

TTM (degrees Celsius) 33: 448 (73.8%) 

36: 61 (10.0%) 

None: 98 (16.1%) 

Outcome Good: 225 (37.1%) 

Poor: 382 (62.9%) 

CPC 1: 181 (29.8%) 

2: 44 (7.2%) 

3: 20 (3.3%) 

4: 9 (1.5%) 

5: 353 (58.2%) 

 

2.2. Model Architecture 

The 1D-Convolutional Neural Network (CNN) model is 

a 1D version of the ResNet-18 architecture [4] and was 

developed using PyTorch. The expected input dimensions 

of the model are batch size x 5 channels x 2500 datapoints. 

The model performs binary classification between good 

and poor outcomes. The model architecture is shown in 

Figure 1. Each convolution layer was followed by a batch 

normalization and ReLU activation function. The ResNet 

model was selected because of the skip/residual 

connections, which help avoid the vanishing gradient 

problem [4]. The cross-entropy loss function and Adam 

optimizer were selected. 

The Random Forest, trained on patient features, was 

developed using the scikit-learn library in Python. The 

expected input dimensions of the Random Forest are 

number of trials x 8 features. 

Both the ResNet-18 and Random Forest were tuned to 

maximize True Positive Rate (TPR) of predicting poor 

outcomes. TPR was calculated as the number of correctly 

identified patients with poor outcomes divided by the total 

number of patients who had poor outcomes. The TPR was 

maximized while fixing False Positive Rate (FPR) at a 

maximum value of 0.05. FPR was calculated as the number 

of patients incorrectly identified as having a poor outcome 

divided by the total number of patients who had good 

outcomes. 

 



 
Figure 1. 1D ResNet-18 architecture. The model takes in 

data of 5 channels x 2500 datapoints. The ResNet-18 

begins with a convolution and max-pooling. It then 

contains 4 different residual blocks colored in orange, 

green, blue, and yellow. The model ends with an average-

pooling, fully connected layer to reduce to 2 classes, and a 

softmax layer to scale predictions between 0 and 1. 

 

2.2. Model Tuning 

The training, validation, and test sets contained data 

from 607, 107, and 306 patients respectively. Five data 

folds were created within the training dataset to tune our 

model architecture. The folds were stratified so that equal 

numbers of patients with a certain CPC score were in each 

fold. No two folds contained data from the same patient. 

The hyperparameters tuned in the CNN model were 

batch size and learning rate. A grid search was performed 

to find the optimal hyperparameters. The optimal 

hyperparameters were selected based on the highest 

average TPR from the 5-fold Cross-Validation (CV) on the 

training set. The batch size was set to 128, and the learning 

rate was set to 0.01. For each of the folds, the model was 

trained using two hours of data and adjudicated on the left-

out fold using six hours of data. In the left-out fold each 

patient’s EEG data was run on the trained model 

separately. The output of the Softmax function was 

averaged across all 2500-datapoint windows of the six 

hours of EEG data so that each patient had one prediction 

value. Training was completed in ten epochs for each fold. 

The TPRs were saved for all ten epochs in each of the five 

folds. To find the best generalizable stopping criteria, The 

TPRs were averaged across folds for each of the ten epochs 

and the number of epochs was set to the epoch with the 

highest average TPR. Using this method, the stopping 

criteria was set to eight epochs. Figure 2 shows the average 

TPR across the folds for each of the ten epochs. The 

highest average TPR was 0.47 at epoch eight. 

 

Figure 2. Average ResNet-18 TPR from 5-Fold CV. The 

model was trained for 10 epochs on each fold, but the 

eighth epoch had the highest average TPR and so 8 epochs 

was used for training on the entire training set to be 

evaluated on the validation and test sets. 

 

The hyperparameters tuned in the Random Forest were 

the number of trees and the maximum depth of each tree. 

A grid search was performed using the training set and 5-

fold CV yielding the highest average TPR. The number of 

trees was set to 100 and the maximum depth of each tree 

was set to 10. Each patient had one set of features, so no 

averaging of the prediction values was necessary as it was 

in the CNN.  

The prediction values were fused between the CNN and 

Random Forest using weighted averaging. A grid search 

was used to find the optimal weights to assign to each of 

the model’s outputs such that the highest average TPR was 

achieved across the five folds. The best weights were 0.83 

for the CNN and 0.17 for the Random Forest. Once all 

hyperparameters were selected for the CNN, Random 

Forest, and the fusing of the two models, the model was 

trained on the entire training set and evaluated on the 

validation and test sets. Figure 3 shows how the ResNet-

18 and Random Forest were fused together. 

 



Figure 3. Model Fusion Schematic. The ResNet-18 was 

trained on EEG data and the Random Forest was trained on 

patient features. The predictions of the two models are 

combined using a weighted fusion, resulting in one 

prediction per patient. 

 

3. Results 

The fused ResNet-18 and Random Forest model was 

evaluated on the training set using 5-fold CV, and then was 

evaluated on the training set,  hidden validation set,  and 

hidden test set. These scores were determined after 72 

hours from ROSC. For all results, the FPR was fixed at less 

than 0.05. Within the training set, the model achieved an 

average TPR of 0.50 ± 0.09. The trained model on the 

training set, validation set, achieved TPRs of 0.809, 0.448, 

and 0.530 respectively. Table 2 organizes these results. 

 

Training 

CV 

Training Validation Test Ranking 

0.50 ± 0.09 0.809 0.448 0.530 14/36 

Table 2. Model Performance. The results provide TPR at 

FPR of 0.05. The Test TPR is the official challenge score. 

 

4. Discussion 

By fusing a CNN trained on continuous data with a 

Random Forest trained on discrete data, the model 

achieved reasonable performance. This model 

demonstrates that collapsing EEG into brain regions can 

help with dimensionality reduction when dealing with 

large datasets. Reducing from 19 to 5 channels allowed us 

to train on more than three times the temporal information 

with the set hardware constraints.  Collapsing EEG into 

brain regions can also help filter noise when one channel 

becomes disconnected or has large artifacts. Future work 

should be done with collapsed EEG regions.  

Fusing models with continuous data and discrete 

features is a method that may benefit  the prediction of 

good or poor outcomes in comatose patients following 

cardiac arrest. This fusion method may also benefit work 

on other biosignals and should be explored further. 
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