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Abstract 

Predicting the outcome of critically ill patients after 

cardiac arrest is a substantial clinical challenge. As part 

of the 2023 George B. Moody PhysioNet Challenge, we 

used an ensemble of extreme gradient boosted (XGB) trees, 

trained on electroencephalogram (EEG) data across three 

distinct levels of analysis to predict neurological 

outcomes. To this end, we preprocessed raw EEG 

recordings via filtering and motion correction and 

extracted several features, including connectivity, power 

spectral density (PSD), and coherence. The first step of 

model training and optimization occurred at the Recording 

level, where we trained XGB trees on each feature set (e.g., 

PSD) derived from every EEG recording. These models 

predicted the neurologic outcome for each recording. At 

the Patient level, we computed the median of each feature 

set for each patient, which we used to make patient-specific 

predictions. Finally, the Challenge level merged and 

optimized predictions from the previous levels, thus 

synthesizing patient and recording specific predictions. 

Our approach produced successful results on the test set, 

with Challenge Scores of 0.371 (12 hrs), 0.480 (24 hrs), 

0.569 (48 hrs), and 0.678 (72 hrs), resulting in a final 

ranking of 9/36 (team: WesternUni). The approach showed 

particular promise at early timepoints, placing 2nd when 

only using EEG available 12-hours post-ictus.  

 

1. Introduction 

Providing an early and accurate prognosis for patients 

who remain in a coma following cardiac arrest is one of the 

greatest challenges in critical care [1, 2]. Electroencephalo-

graphy (EEG) is one diagnostic tool used in the intensive 

care unit (ICU) to make clinically relevant decisions [3-5]. 

EEG measures electrical activity produced by the brain via 

electrodes placed on the scalp. Many different patterns of 

electrical activity have been identified by clinicians who 

have characterized how the patterns are related to the 

course and progression of the injury [5]. 

 

However, prognostication using EEG is far from 

perfect. Indeed, there is debate about the true meaning of 

specific EEG patterns and whether they are ultimately 

related to patient outcomes [3-5]. These problems are 

exacerbated by inter-reliability issues between 

electroencephalographers when identifying these EEG 

patterns via  visual inspection alone [6]. Hence, there 

remains a need for objective and quantitative assessments 

of EEG’s relation to neurologic recovery. 

 

Machine learning is emerging as the quantitative 

method of choice to make predictions from EEG data  [7, 

8]. One particularly successful machine learning approach 

is extreme gradient-boosted (XGB) trees [9, 10]. XGB has 

been applied to several domains and has been the model of 

choice for several machine learning competitions [9, 11]. 

XGB learns by aggregating predictions made by a base 

classifier (e.g., decision trees [12]) in an iterative fashion. 

By adding successive decision trees to address error from 

previous steps, the model can learn to predict increasingly  

difficult training examples and at increasingly faster 

speeds than other tree-based approaches [13]. This 

approach relies on the foundation of an ensemble of weak 

learners – the idea that many minimally predictive 

decision trees, once combined, can produce an effective 

predictive model (i.e., strong learner) [10].  

 

As part of the 2023 George B. Moody PhysioNet 

Challenge [14], we built a  multi-level model that uses XGB 

trees trained on EEG measures detectable within the first 

days of ICU admission to inform the likelihood of recovery 

of critically ill patients. 

 

2. Method 

    The PhysioNet Challenge consists of ~50,000 EEG 

recordings from ~1000 cardiac arrest patients [14-16]. 

Each recording reflected at most an hour of continuous 

EEG taken before 72 hours post-ictus. Functional outcome 

was measured by the cerebral performance category (CPC) 

score, which categorized patients into good (CPC 1-2) and 



poor outcome (CPC 3-5) groups. Data from ~600 patients 

was made available for model training. 

 

2.1. EEG preprocessing  
 

Five EEG electrodes (F3, P4, C3, T4, O1) were band-

pass filtered [0.1-30 Hz] and motion-corrected. Motion 

correction was applied in two steps. First, the moving 

standard deviation was computed across each recording. 

Data  that exceeded five standard deviations were removed. 

The moving standard deviation was then recomputed, and 

segments exceeding four standard deviations were 

removed from the data. Additionally, data with a moving 

standard deviation below 10−4µV were also excluded. 

Contiguous segments of clean data were combined in 200 

second epochs.  

 

 

2.2. Feature Extraction  
 

Five sets of features were computed on each recording 

for each epoch of the preprocessed data. Feature extraction 

was conducted on Python (Version 3.81) using mne, scipy, 

and FLOOF packages [17, 18]. Power spectral density 

(PSD) was computed for delta (1-4 Hz), theta (4-8 Hz), 

alpha (8-12 Hz) and beta (13-30 Hz) frequencies for every 

1 Hz band. Spectral coherence and weighted phase lag 

index (wPLI) were similarly computed for delta, theta and 

alpha frequencies. Next, the aperiodic component was 

computed on the average of the 5 EEG electrodes. Finally, 

basic statistical properties of the signal (e.g., mean, 

variance, peak, kurtosis) were calculated on the 

preprocessed data. The ‘trajectory’ of these features was 

calculated as the mean difference between successive 

recordings to obtain information about how these features 

change over time. Features were averaged across epochs 

for each patient, and a two-step data cleaning was applied 

to remove outliers, which involved removing features 

exceeding five standard deviations and then four standard 

deviations. While the total number of rejected recordings 

varied between features, approximately 1/3 of recordings 

were removed for each EEG feature. Finally, patient 

clinical information, including age, gender, return of 

spontaneous circulation, targeted temperature 

management, and the presence of a shockable rhythm, as 

well as data quality information (e.g., number of clean 

epochs, total number of clean recordings), were also used 

as features. 

 

2.3. Multi-level model training  
  

Model training occurred at three levels: Recording 

level, Patient level, and Challenge level (see Figure 1).  

 

Recording Level. XGB trees (implemented using the 

xgboost package [14]) were individually trained on each 

feature set (e.g., PSD, wPLI). The outcome measure was 

the functional outcome of a patient assigned to each of their 

recordings. The tree-structured Parzen Estimators 

Approach (implemented via the Hyperopt package [19]) 

was used for hyperparameter optimization. The 

hyperparameters were optimized to maximize the balanced 

accuracy of five stratified folds of the training data 

(implemented via sci-kit learn [20]). Optimization 

occurred for sixteen hyperparameters, including alpha, 

lambda, eta, max depth, max delta step, column sampling, 

and subsampling. Each trained model used the training 

data to predict outcome and outcome probability for each 

recording. 

 

Patient Level. The features were aggregated for each 

patient by taking the median value obtained at the 

Recording level. Then, XGB models were optimized for 

each set of features identically to the Recording level. A 

XGB model using only patient clinical information (e.g., 

age, gender, ROSC) was also optimized at this stage. Each 

trained model predicted an outcome and outcome 

probability for each patient. Notably, when no EEG 

features were available for a patient (e.g., due to poor data 

quality), the model trained on only clinical information.  

 

Challenge Level. The median outcome prediction and 

     Figure 1. Diagram of the multi-level modelling approach. 
Our approach consisted of Recording, Patient and Challenge 

levels. Sets of features are denoted as 𝐹𝐿,𝑖 where 𝐿 denotes 

the level (e.g., 𝑅  stands for Recording) and 𝑖  denotes a 

feature set (e.g., PSD). Arrows denote the training and 

optimization of an XGB model. Each model outputs an 

outcome prediction and probability, shown by two vectors  

following each arrow. The outcome and prediction 

probability were concatenated for all features in both the 
Patient and Recording levels, and a final XGB model was 

trained on predictions from those levels and optimized to 

maximize the Challenge Score, thus producing a final 

outcome probability prediction. 

 



probability from the Recording level were computed for 

each patient and concatenated with the outcome prediction 

and probability from the Patient level. This resulted in a 

matrix of outcome predictions and probabilities across 

features and levels. The ‘trajectory’ of features, as well as 

data quality features, were also included in this step. 

Optimization proceeded identically as the preceding levels 

except with the objective of maximizing the PhysioNet 

Challenge Score. This model was used to classify good and 

poor outcomes as well as CPC scores at 12-, 24-, 48-, and 

72-hours post-ictus. 

 

3. Results 

Our approach produced successful predicted outcomes 

on the test set, with Challenge Scores of 0.371 (12 hrs), 

0.480 (24 hrs), 0.569 (48 hrs), and 0.678 (72 hrs), resulting 

in a final ranking of 9/36. Similar results were obtained on 

the validation set, with Challenge Scores of 0.37 (12 hrs), 

0.69 (24 hrs), 0.51 (48 hrs) and 0.52 (72 hrs). For accuracy 

metrics for train, validation, and test sets, see Figure 2B.  

 

Table 1. PhysioNet 2023 Challenge Score Results 

 

Time Challenge Score Ranking  

12 hours 0.371 2/36  

24 hours 0.480 8/36  

48 hours 0.569 11/36  

72 hours 0.678 9/36  

     

    The importance of different features across the different 

levels is reported in Figure 2A. Generally, features 

gathered at the Recording level have higher average 

importance (as measured by gain) than at the Patient level. 

Moreover, some features are important across time points 

(e.g., PSD), whereas others show greater importance at 

different time points (e.g., coherence at later time points). 

Generally, when EEG recordings are fewer in number, the 

model relied more on clinical information.   

 

4. Discussion 

    Our method successfully identified the functional 

outcome of patients following cardiac arrest. Particularly, 

our approach excelled at predicting neurologic recovery at 

early time points, including the 2nd highest score in the 

Challenge at the 12-hour mark, and 1st place on the 

validation set at 24 hours. Notably, it is typically thought 

that these early points following resuscitation are too early 

for prognostication based on clinical assessment alone due 

to variability in medical stability. However, our results 

suggest that certain EEG features may contain useful 

information even at these early timepoints. Of these, PSD 

and the aperiodic component tended to be the most 

informative. However, our technique was competitive at 

later time points, placing 9 th in the competition. It may be 

the case that increasing the number of recordings may have 

resulted in additional outliers that were not sufficiently 

cleaned. Given these results, future work should 

investigate systematic quality and feature differences 

across time points. 

 

Our approach has several advantages. First, it is flexible 

and could incorporate numerous features beyond the ones 

reported here (e.g., weighted-symbolic mutual information 

[18], motifs [19]), as well as accommodate different 

classifiers (e.g., deep learning models), which can be 

different learning objectives. Additionally, the framework 

is well-suited for making predictions on individual 

     Figure 2. Panel A shows a dot plot with feature importance (gain) for our model calculated on the training set. Features were computed 

independently at either the Recording level (circles) or Patient level (arrow) across four timepoints (12,24,48,72 hours). For simplicity, 
the gain is averaged within each feature. For example, the feature importance for PSD is the gain for each of its individual features (e.g., 

outcome prediction, outcome probability, trajectory information), which is then averaged. Panel B shows bar plots of the scores of various 

accuracy metrics for predicting outcome -- computed on training, validation, and test sets across each timepoint. 
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recordings. It could be extended to make predictions on 

individual epochs of data, signaling its potential for 

predictions to be made in real-time within ICU settings.  

 

There remains potential for improvement at each step 

and level of our machine learning approach. For the 

purposes of the Challenge, a 72-hour restriction on training 

the data was imposed, which meant that expediency had to 

be prioritized, sometimes at the cost of robust data quality 

checking. For example, a  lack of proper data cleaning led 

to many outliers within the feature set, which we addressed 

only with a quick two-step outlier detection method. 

Another limitation was using only five channels for feature 

selection and excluding electrocardiography, which likely  

reduced model performance. Given that our approach used 

three model training levels, including a computationally 

heavy approach that used every recording (rather than 

averaging recordings across patients), it would have 

benefited from increased training time. 

 

In conclusion, we used a novel multi-level machine 

learning approach to predict functional outcomes of 

patients who remained unresponsive following cardiac 

arrest using EEG. This study adds to the growing body of 

research supporting the combination of EEG and machine 

learning to assist clinical prognostication [7, 8]. These 

results highlight this machine learning technique's 

potential to provide early and accurate prognostication, 

which is desperately needed to improve goal-directed 

patient care in the ICU. 
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