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Abstract 

As part of the 2023 PhysioNet Challenge, our team 

FINDING_MEMO utilized Transformer to predict 

outcomes using patient EEG data since it excels at dealing 

with sequential data like EEG. We mainly used the 

Transformer encoder block’s multi-head self-attention to 

generate representations from the input and leverage 

several hidden layers to form the final prediction. Using 

the latest EEG from every patient, our team achieved the 

challenge score of 0.42 with the hidden validation set 

(ranked 36th out of 73 invited teams) and obtained a result 

of 0.37 (ranked 29th out of 36 qualified teams). Our results 

show a consistent performance across varying EEG 

recording durations in both the validation and test set. Our 

team also had the second-best score when evaluated, with 

only 12 hours of available recordings in the test set. Such 

promising results showcase the models’ generalizability 

and clinical potential in predicting outcomes for comatose 

patients, especially for limited available EEG recordings. 

 

 

1. Introduction 

This paper comes from our team FINDING_MEMO’s 

participation in the “Predicting Neurological Recovery 

from Coma After Cardiac Arrest: The George B. Moody 

PhysioNet Challenge 2023” [1-2]. This year's challenge 

objective was predicting the neurological outcomes of 

comatose patients following cardiac arrest. Teams were 

tasked with classifying their outcomes as either "good" or 

"bad" using the cerebral performance category (CPC) scale 

based on data such as electroencephalogram (EEG), 

electrocardiogram (ECG), and other clinical information. 

EEG, which captures electrical brain activity, serves as a 

valuable indicator of a patient's neurological recovery. 

This challenge’s primary evaluation metric is the true posi- 
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tive rate at a false positive rate of 0.05. 

The dataset [3] consists of 1020 patients, which were 

further divided into 60% training, 10% validation, and 30% 

test set. All subsequent experiments were trained and 

cross-validated using the 607 patients training dataset and 

evaluated with the remaining datasets for the leaderboard. 

 

2. Methods 

2.1 Inclusion and Exclusion Criteria 

In recent years, numerous studies [4-6] have 

emphasized the potential of EEG signals in unraveling the 

intricate workings of the brain, particularly in predicting 

outcomes for post-anoxic comatose patients. These studies 

consistently demonstrated the highest sensitivity and 

specificity when leveraging earlier EEG signals. They 

have effectively showcased EEG's potential in addressing 

brain-related disorders. Consequently, we focused 

exclusively on EEG channels for all our experiments, 

excluding others such as those from ECG. 

This paper covers various trials, including early and 

recent experiments, to assess our model's ability to predict 

neurological outcomes in comatose patients, highlighting 

successes and areas for improvement. 

In our primary experiment (TRS1), which serves as our 

team's main submission, we exclusively utilized the most 

recent hour of EEG signals alongside each patient's clinical 

data. The objective of this trial was to evaluate the model's 

predictive performance while working with a limited 

dataset of EEG information, specifically focusing on just 

one representative hour. It is worth noting that prior 

research studies [4-6] have hinted at the superior predictive 

potential of utilizing earlier EEG time points. However, 

our decision to focus on the last hour of data was 

influenced by a significant issue: the presence of extensive 

missing data in the initial hours of the dataset. 

Furthermore, it is essential to consider that the challenge 

at hand emphasizes the development of predictive models 

using a 72-hour data window rather than shorter time 

frames, such as 12 or 24 hours. Given this context, it 

becomes more logical to incorporate later data from the 

early EEG records provided, aligning our approach with 

the challenge's requirements. 

In our subsequent experiments, denoted as TRS2, TRS3, 

and TRS4, we employ varying subsets of available EEG 



data from the initial hours for training and evaluating the 

model: the first 24 hours, the first 48 hours, and the first 72 

hours, respectively. The primary objective of these 

experiments was to assess whether the predictive 

performance improves when using shorter time intervals 

(24 and 48 hours) compared to the 72-hour dataset. 

Additionally, we aimed to investigate whether the 

significant amount of missing data in the earlier hours 

negatively impacts predictive performance. Furthermore, 

we intended to explore whether using multiple hours of 

data surpasses the predictive capability achieved when 

relying on just one hourly data per patient. 

It is crucial to note that during the training phase, 

patients who lacked data for 24, 48, or 72-hour hours were 

excluded from contributing to the model's training in the 

respective experiment. This ensures that our analysis is 

based on patients with actual available data for each 

experiment, allowing us to draw meaningful conclusions 

regarding predictive performance from EEG. 

 

2.2. Feature Extraction and Preprocessing 

TRS1 was an initial trial designed primarily to evaluate 

the model's capabilities. Consequently, most of the feature 

extraction and signal processing steps utilized default 

settings provided by the challenge to assess how 

effectively the model could enhance performance under 

controlled conditions. 

For TRS1, the signal processing involved bandpass 

filtering within the range of [0.1, 30] Hz, followed by 

resampling to reduce noise. The resulting signals were then 

normalized to a range of [-1, +1]. Only the F3, F4, P3, and 

P4 channels were employed, with bipolar referencing 

applied to F3-P3 and F4-P4. EEG features from each 

reference were extracted from the power spectral density 

(PSD) of alpha, beta, delta, and theta waves. In conjunction 

with the 8 available clinical features, each patient was 

characterized by a total of 16 features. 

In contrast, TRS2, TRS3, and TRS4 represented 

subsequent trials to refine the model in various aspects. 

These experiments followed the EEG feature extraction 

processes outlined in [7] and [8]. In these trials, all 19 EEG 

channels were used, employing 18 bipolar referencing 

according to the longitudinal bipolar montage. Each of the 

18 bipolar references contributed the same 4 features, 

resulting in a total of 72 EEG features. Combined with 

clinical data, each patient profile consisted of 80 features 

per hourly EEG data. 

Signal preprocessing for TRS2, TRS3, and TRS4 

involved bandpass filtering within the range of [0.5, 30] Hz, 

followed by resampling to 100 Hz for noise reduction, 

followed by normalization to values from -1 to +1. 

These used sequentially organized data as input to 

assess the model's capacity for handling time series data. 

For TRS2, all hourly EEG data from the first 24 hours were 

utilized, with missing hours filled in with NaN values. 

Subsequently, each hourly data point was concatenated 

with the corresponding clinical data, as they all originated 

from the same patient. TRS3 and TRS4 employed 48 and 

72 hours of data, respectively. To address missing values, 

imputation was performed using the mean value for each 

feature. Both EEG and patient features were further 

normalized to values from 0 to 1. 

 

2.3. Vanilla Transformer 

Inspired by [7] and [8], who used CNN-LSTM and 

bidirectional LSTM models for time series, we adopted 

Transformers for our implementation. Transformers excel 

at handling sequential data, which is crucial for our task 

given EEG data's time-dependent nature and the 

challenge's objective of predicting future outcomes from 

earlier data. 

The Transformer model, introduced in [9], includes 

encoder and decoder blocks that employ multi-head self-

attention for creating data representations. The multi-head 

mechanism calculates distinct attention weights for 

different input parts, enabling selective attention to more 

important parts. The encoder generates a feature 

embedding from the input, while the decoder constructs an 

output based on the input embedding. 

Transformers are adept at capturing sequential patterns 

and have diverse applications, especially in handling 

sequential time series data, where their sequence-

processing capabilities shine. Some variants, like Gated 

Transformer Networks (GTN) [10], tackle specific time 

series challenges, exhibiting exceptional classification 

performance across 13 multivariate time series datasets. 

GTN outperformed other benchmarks significantly, 

demonstrating Transformers' potential in handling various 

sequential time series data types. 

 

2.4. Model Implementation 

Two parallel Transformer models were trained for each 

experiment: one for outcome and another for CPC 

prediction. Figure 1 illustrates the model architecture. Both 

models make use of the Transformer encoder to generate 

the final prediction, omitting the decoder component. This 

is because the decoder's primary function is to reconstruct 

the embedding to match the input's top level, which is not 

necessary for these tasks. Both models take the pre-

processed patient features as input and produce an 

embedding through the embedding layer with the same 

dimensions as the input. 

For TRS1, since we used only the most recent hour of 

EEG recording, this resulted in one row of data per patient. 

The feature rows from the different patients were then 

combined into a single training dataset. We then 

randomized the order and trained the models in batches of 

10, which aided in enhancing their generalizability. 



In the case of TRS2, TRS3, and TRS4, we took a 

different approach. Instead of mixing the data, we 

extracted the EEG features per hour and arranged them in 

sequential order per patient prior to training. For instance, 

as illustrated in Figure 2, the training process with TRS4 

involved stacking all 72 hours of extracted EEG features 

with the clinical data for each patient in sequential order, 

with each H representing the corresponding hour for each 

feature row. For each patient, we trained the model using 

their data as a single batch. In cases where data was 

missing, such as the third hour of data for patient 1, we 

used mean imputation to fill in the gaps for the respective 

features. We employed this strategy to ensure that the data 

of each patient remained distinct and were not mixed with 

other patients’ data. Masking was also applied to these 

three implementations to mask out the imputed hours, 

aiding the models to focus more on the available data. 

 

 
Figure 1. Transformer model architectures, Outcome 

Transformer (left) and CPC Transformer (right), using the 

preprocessed EEG features and clinical data as the input. 

 

 
Figure 2. Model training pipeline for TRS4 with ‘H’ 

representing each hour of features and the red boxes 

representing the imputed missing hours. 

 

The input embedding is processed by two layers of 

stacked Transformer encoders, utilizing 11 heads for TRS1 

and 8 heads each for TRS2, TRS3, and TRS4. Multi-head 

attention is employed to form the output embedding. In the 

latter three implementations, a masking vector is applied 

as an additional input to the encoder. 

The transformer for outcome prediction employs 

BCEWithLogitsLoss as its loss function and uses RAdam 

as the optimizer in all implementations. In contrast, the 

transformer for CPC uses L1Loss as its loss function and 

employs RMSProp as the optimizer. We selected these 

hyperparameters through several rounds of tuning and 

trained them for 5 epochs each. 

We then use a fully connected layer to finalize the 

outputs, applying the Sigmoid activation function for the 

outcome model to calculate the probabilities. In the last 

step, during both training and testing, an average pooling 

operation is performed on each column of data to derive 

the final prediction for the current patient, with the specific 

pooling determined by the batch size. 

For cross-validation, TRS1 employs k-fold (k=5), while 

TRS2, TRS3, and TRS4 utilize GroupKFold (k=5) to 

ensure that data groups per patient remain intact and 

unmixed with data from other patients. 

 

3. Results 

Table 1. Cross-validation results across experiments. 

 

Model CS ROC PRC F1 MSE MAE 

TRS1 0.26 0.77 0.84 0.79 3.53 1.36 

TRS2 0.24 0.68 0.72 0.64 3.46 1.11 

TRS3 0.26 0.75 0.81 0.74 3.09 1.02 

TRS4 0.15 0.73 0.80 0.72 3.07 1.03 

 

Table 1 provides an overview of the cross-validation 

results obtained across experiments, using the following 

metrics: CS (Challenge Score), ROC (Area under the 

Receiver Operating Characteristic curve), PRC (Area 

under the Precision-Recall curve), F1 (F1-Score), MSE 

(Mean Squared Error), and MAE (Mean Absolute Error). 

 

Table 2. Results from the public leaderboard for TRS1. 

 
Model 12H 24H 48H 72H 

training 0.41 0.44 0.43 0.43 

validation 0.39 0.40 0.40 0.42 

test 0.37 0.38 0.40 0.37 

 

Table 2 provides a comparison of our team's challenge 

scores using TRS1 when evaluated with the training set, 

validation set, and test set across various available EEG 

recording durations for evaluation. 

 

4. Discussion and Conclusions 

In Table 1, TRS1 outperforms the other experiments on 

CS, ROC, PRC, and F1. However, the difference among 

them is relatively small, suggesting potential for further 

improvements with the other three implementations. 

In Table 2, when evaluated with the validation set, the 

model displayed an encouraging upward trend as the 

evaluation included more recording hours. However, when 

evaluated with the test set, the scores exhibited an upward 

trend up to the 48-hour mark, followed by a slight decline 

at 72 hours. This suggests the need for ongoing 



improvements to achieve better results at the crucial 72-

hour point, which was the primary focus of the challenge. 

Notably, despite the marginal decrease in scores at 

different available time points, it's significant to observe 

that the scores remained consistent when assessed with 48 

hours of available recordings per patient for both validation 

and test sets. Another noteworthy point is that our team 

achieved the second-best score when evaluated with 12 

hours of available recordings, with only one other team 

surpassing us with a score of 0.38. This underscores the 

exceptional performance of our model when dealing with 

fewer available recordings, a vital attribute in the clinical 

context where missing data is a common challenge. 

Another noteworthy aspect is the consistent 

performance of our model across different timeframes, 

resulting in challenge scores that closely resemble each 

other. This consistency underscores our model's ability to 

generalize effectively, performing at a high level even 

when confronted with earlier time points, despite being 

primarily trained on the most recent hour of data. 

Interestingly, our experiments indicate that using a single 

representative hour of EEG recording from each patient 

outperforms models that use more extensive hours of 

recordings and this may be due to significant missing data, 

especially in the initial hours, as shown in Figure 3. 

It is important to note that deep learning models, 

including Transformers, often excel with larger datasets. 

Given that this study used data from only 607 patients for 

training, there is a high likelihood of significantly 

improved model performance with larger training datasets. 

Nevertheless, the results obtained from this study already 

show promising clinical potential from using Transformers 

for outcome prediction of comatose cardiac arrest patients 

using EEG and clinical data. 

 

 
Figure 3. Hourly available EEG data 
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