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Abstract

The 12 lead electrocardiogram (ECG) is the most com-
mon front-line diagnosis tool for assessing cardiovascular
health, yet there are many diseases which traditional ECG-
analysis cannot detect. Machine learning (ML) techniques
have emerged as a powerful set of techniques for produc-
ing automated and robust ECG analysis tools that can of-
ten predict diseases and conditions not detectable by tradi-
tional ECG analysis. Many contemporary ECG-ML stud-
ies have focused on utilizing the full 12 lead ECG, however,
with the increased availability of single lead ECG data
from wearable devices, there is a clear motivation to ex-
plore the development of single lead ECG-ML techniques.
In this study we developed and applied a deep learning ar-
chitecture for the detection of low left ventricular ejection
fraction (LVEF), and compared the performance of this ar-
chitecture when it was trained with individual leads of the
12 lead ECG to the performance when trained using the
entire 12 lead ECG. We observed that single lead-trained
networks performed similarly to the full 12 lead-trained
network. We also noted patterns of agreement and dis-
agreement between network low LVEF predictions across
the different lead-trained networks.

1. Introduction

The most common front-line tool for cardiovascular dis-
ease diagnosis is the electrocardiogram (ECG) because it
is inexpensive, noninvasive, and ubiquitous.[1,2] Recently,
mobile and wearable technologies have made electrocar-
diogram data available nearly everywhere.[3] With the rise
in availability of ECG recordings, development of ma-
chine learning tools for ECG analysis has shown promise

in expanding the utility of the ECG to improve diagnos-
tic power and address diseases which are not traditionally
detectable via ECG such as low left-ventricular ejection
fraction (LVEF).[4, 5]

Contemporary ML approaches have focused primar-
ily on leveraging the full 12 lead ECG (which typically
consists of between 8 to 10 unique measured electro-
grams).[4, 6] However, it is not clear if all leads are nec-
essary to achieve acceptable accuracy, and numerous ap-
plications of these algorithms require training and deploy-
ment on much more limited data (i.e., a single lead). Ad-
ditionally, understanding the differences in performance of
ML techniques when applied to different individual leads
is paramount to designing robust and accurate ML-ECG
diagnosis techniques to better understand and optimize ML
performance.

In this study, we developed and applied a deep learn-
ing architecture for the detection of reduced heart function
(low left-ventricular ejection fraction [LVEF]), and trained
this network on each measured lead of the 12 lead ECGs
individually. We then compared the performance of these
individual lead networks to each other and also to a net-
work trained using all of the leads (the current standard).
We found that several of the leads produced trained ML
networks that accurately predict LVEF with comparable
accuracy to using all of the leads simultaneously. Addi-
tionally we noted patterns of agreement and disagreement
between ML diagnosis of low LVEF for networks trained
on individual leads. This study seeks to pave the way for
future research into both the development of robust ML-
ECG algorithms using limited ECG data, as well as under-
standing of how these algorithms work in the context of
multi-vector ECG data.



Figure 1. ECG low LVEF detection architecture. This network con-
sists of an input stage, temporal and spatial residual blocks, and an output
stage. Each residual block consists of four layers of residual blocks, sim-
ilar to the common resnet structure. In cases where the number of input
channels is less than the output channels (layers 1 through 3) the input
is re-sampled using a 1x1 convolutional layer. The spatial residual block
uses 7x1 convolutional filters whereas the temporal uses 1x3 filters. The
features from the two residual blocks are concatenated before the output
stage.

2. Methods

Dataset: Digital ECG recordings (8 measured channels,
L1, L2, V1 through V6) from 24,868 patients were col-
lected from the University of Utah health system from
2012 to 2021. Each ECG was associated with LVEF
measurement made within 4 weeks of the ECG record-
ing. Ejection fraction was calculated by expert echocar-
diographic measurements. Each ECG recording consisted
of 10 seconds of continuous simultaneous recording from
each lead at 500 hz, resulting in an 8 × 5, 000 matrix for
each ECG. ECG signals and associated LVEF measure-
ments were split into a 90% training set (22,382 patients)
and 10% (2,486 patients) testing set.
Machine Learning Architecture and Training: Detec-
tion of low LVEF was framed as a binary classification
task, using a cutoff of below 40% as low LVEF as seen
in previous studies.[4] Our network architecture is based
on a residual, network which we have shown to be an ef-
fective structure for ML-ECG analysis [7]. In brief, the
network consisted of temporal and spatial convolutional
filters, batch normalization, dropout (probability = 0.5),

rectified linear unit (ReLU), fully connected layers, and a
sigmoid output. Spatial and temporal convolutional layers
were arranged into residual blocks, and their output fea-
tures were concatenated before the fully connected layers.
The architecture is depicted in Figure 1.

A separate instance of the architecture was trained for
each individual lead, as well as using all 8 unique leads as
input, resulting in 9 total training scenarios (Lead I, II, V1,
V2, V3, V4, V5, V6, and All Leads). For each training sce-
nario, binary cross entropy loss was evaluated between the
network prediction and target LVEF label using the ADAM
optimizer to tune weights. At each of 50 training iterations,
area under the receiver operator curve (AUC) was com-
puted for the test dataset and used as a selection criteria
for preventing over-fitting of the parameters. This training
process was replicated 5 times for each lead scenario using
the same training and test datasets to minimize the effect
of weight and bias initialization on network performance.
The result was 45 trained networks (5 per lead group).
Analysis metrics: AUC, F1 score, sensitivity, and speci-
ficity were computed for each network using the training
data, and averaged across each replicate for the 9 train-
ing scenarios (leads 1 through 8, and the scenario which
used all 8 simultaneously). Sensitivity and specificity were
computed at a network output threshold corresponding to
the maximum F1 score. Unthresholded network outputs
were then compared between each trained network accord-
ing to correlation defined as

C =
||PT

1 P2||2
||P1||2 · ||P2||2

, (1)

where Pn was the 1 × 2, 486 mean subtracted vector of
network predictions for the nth network for the 2,486 test
samples, T denotes the vector transpose, and ||−||2 denotes
the Euclidean 2 norm. Each network was provided as input
the same lead(s) used to train it.

3. Results

Detection of low LVEF using all 8 recorded leads (the
current standard) resulted in an average AUC of 0.93 ±

0.00, mean F1 score of 0.60 ± 0.02, mean sensitivity of
0.62 ± 0.04, and mean specificity of 0.96 ± 0.01. Training
using each individual lead produced low LVEF detection
networks with AUCs within 0.07 of the networks trained
using all 8 of the recorded ECG leads. Lead V6 produced
the highest performing networks with mean AUC of 0.91
± 0.00, mean F1 score of 0.57 ± 0.02, mean sensitivity of
0.58 ± 0.05, and mean specificity of 0.96 ± 0.01. Lead I
was not far behind with a slightly lower F1 score, sensitiv-
ity, and specificity. The numerical results are summarized
in Table 1.

Agreement between network outputs (unthresholded



Table 1. Low LVEF classification metrics for each network training scenario. For each lead used, five separate networks
were trained to detect low LVEF. Metrics are reported as mean plus or minus one standard deviation.

Lead Used AUC F1 Score sensitivity specificity
I 0.91 ± 0.00 0.54 ± 0.00 0.56 ± 0.09 0.95 ± 0.02
II 0.89 ± 0.01 0.50 ± 0.01 0.56 ± 0.02 0.94 ± 0.01

V1 0.88 ± 0.00 0.48 ± 0.01 0.50 ± 0.04 0.95 ± 0.01
V2 0.86 ± 0.01 0.48 ± 0.01 0.55 ± 0.08 0.93 ± 0.03
V3 0.87 ± 0.00 0.49 ± 0.01 0.57 ± 0.08 0.93 ± 0.02
V4 0.88 ± 0.00 0.51 ± 0.01 0.57 ± 0.04 0.94 ± 0.01
V5 0.90 ± 0.00 0.53 ± 0.01 0.58 ± 0.07 0.95 ± 0.02
V6 0.91 ± 0.00 0.57 ± 0.02 0.58 ± 0.05 0.96 ± 0.01
all 0.93 ± 0.00 0.60 ± 0.02 0.62 ± 0.04 0.96 ± 0.01

values) varied between networks trained with different
leads. Figure 2 shows a heat map of the average corre-
lation between network outputs for each network train-
ing scenario. A high value in this heat map indicates
that on average networks trained with the two indicated
lead sets produced outputs that agreed or were similar. A
low value indicates that these networks produced outputs
which were dissimilar. Excluding comparisons between
networks trained on the same leads, we observed relatively
high agreement (average correlation above 0.7) between
leads V1 and V2, between leads V2 and V3, and between
leads V5 and V6. Networks trained using leads I, V2, V3,
V5, and V6 all showed high average correlation of outputs
(above 0.7) with networks trained using all leads.

4. Discussion and Conclusions

In this study we report detection of low LVEF using a
custom residual-based ML architecture, and compare the
performance of that network when trained using limited
leads to using a full ECG lead set. We also compare
the resulting network predictions across training scenarios.
When trained using all 8 unique ECG leads of a 12 lead
ECG, our novel residual-based ML architecture depicted in
Figure 1 achieves network performance that matches con-
temporary published implementations according to AUC
(average AUC of 0.93 over 5 instances).[4]

Low LVEF detection performance did not drop substan-
tially when using only a single lead as compared to us-
ing all available leads for training and inference, with the
largest drop in performance observed when using lead V2
(average AUC 0.86, average F1 0.48, average sensitivity
0.55, average specificity 0.93). In some cases such as when
using lead I or lead V6, the limited lead networks per-
formed comparably to the full lead-set networks. With the
rising popularity of wearable ECG devices, these results
suggest that emphasis should continue to be on designing
wearable ECGs which target the recording of these high
performing leads – many of the most popular devices al-

ready record an ECG equivalent to lead I. The results here
indicate that recordings from such wearable devices would
be sufficient to accurately detect low LVEF.

In this study we also sought to compare the predictions
for low LVEF classification both within networks trained
on the same lead as well as between networks trained with
different leads. Perhaps surprisingly, we found that for
some leads such as V4, the agreement between repeated
instances of the same network architecture trained on this
lead produced predictions in the test set that only agreed
with an average correlation of 0.849. These precordial
leads are known to be subject to high varaibility in their
placement on the chest, which may be an explanation for
the poorer performance of these leads. Because these cor-
relation metrics are based on unthresholded network out-
puts, assessment of network performance differences from
this correlation is indirect. The actual performance of these
networks with respect to false positive, false negative, true
positive, and true negative rates may turn out to be min-
imally different once the outputs are thresholded as evi-
dence by the low standard deviation on the other perfor-
mance metrics (see Table 1), however it is still notewor-
thy that the raw outputs show such variability between net-
works trained in the same manner.

Perhaps as expected, leads which are spatially co-
located (V1 to V2, V2 to V3, etc) showed higher agree-
ment than those spaced more distantly. Identification of
similarly performing leads can be an important first step in
assessing an approach to apply contrastive and self super-
vised learning techniques to ECG data, by leveraging rela-
tive differences in information content present in each lead.
This analysis may also provide useful insight into which
leads are redundant, and allow for design of a streamlined
lead set for use in wearable ECG systems and future ML-
ECG studies, where reduction in network size and com-
putational cost is a key factor in determining feasibility
for clinical translation. Future studies may also explore
leveraging the disparate information of each lead to both
optimize the design of ECG-Ml tools as well as possibly



Figure 2. Average correlation of network outputs between each lead scenario. Each correlation in the larger heat map is an average of the correlations
between the five instances of each lead specific network. The identify correlations (along the diagonal for same lead to same lead comparisons) were
excluded from the average. The inset shows the individial per iteration comparisons for lead V4 compared to lead V4.

explore how they leverage information in the leads to pro-
duce clinical decisions or diagnoses.

Future studies may expand on this research by seeking
to understand what features of these different individual
leads contribute to the differences in performance at detec-
tion of low LVEF. Low LVEF is not a feature detectable
by traditional ECG analysis, yet ML techniques are able
to predict low LVEF. Understanding which leads contain
relevant information for that prediction is a first step pro-
posed in this study, which should be followed up with an
investigation on what information is present in those leads
(i.e., ’explainability’). Furthermore, this study was limited
to investigation of low LVEF detection, and future applica-
tions of these same techniques to different clinical patholo-
gies would provide further insight into selection of ideal
ML approaches and leads for ML-ECG analysis.
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