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Abstract

Heart failure is a major health concern that often fol-
lows left ventricular systolic dysfunction (LVSD) whose
early identification could allow better disease manage-
ment. Echocardiography is the primary diagnostic tool
of LVSD, defined as reduced left ventricular ejection frac-
tion (LVEF). Given the cost and practical limitations of
echocardiography, our study investigates whether electro-
cardiography (ECG) could be used to estimate LVEF, mak-
ing it a viable pre-screening test of LVSD.

ECG parameters including intervals and global electric
heterogeneity (GEH) parameters were extracted for each
of the 128 patients in PhysioNet’s SHAREE database with
matched ECG and LVEF. Since the orthogonal XYZ leads
from which GEH parameters are typically derived were not
available in SHAREE, we formed pseudo-orthogonal leads
from the only 3 leads available: X ≈ V5, Y ≈ III and Z ≈
-V3. We divided the 128 subjects in half and trained differ-
ent machine learning models on the first split to estimate
LVEF based on the extracted ECG parameters.

The best performing ECG-based LVEF estimator, a
ridge regression model, yielded a mean absolute error of
9.5%, 95% CI [8.1%, 11.3%] on the evaluation set. Our
study thus suggests that the ECG could be a practical tool
to gain insight on cardiac contractility, specially amongst
asymptomatic individuals.

1. Introduction
Left ventricular systolic dysfunction (LVSD) refers to

an impaired contraction of the left ventricle and can lead to
heart failure and death [1,2]. Early identification of LVSD,
which often remains asymptomatic for years, is therefore
crucial to mitigate associated risks with adequate therapy.
LVSD is most commonly diagnosed through echocardiog-
raphy where it is defined as reduced left ventricular ejec-
tion fraction (LVEF)—different cut-offs have been used to
define LVEF reduction, typically ranging from ≤ 35% to
≤ 50%. However, echocardiography-based screening of

asymptomatic individuals is not cost-effective, and the cri-
teria for selecting potential high-risk individuals to screen
remain unclear.

Unlike echocardiography, electrocardiography (ECG)
is cheap, routinely available and requires little techni-
cal training, making it an attractive tool for pre-screening
LVSD. Studies have suggested an association between car-
diac contractility and ECG intervals like the QT [3] or
ECG-derived global electric heterogeneity (GEH) parame-
ters [4]. Convolutional neural networks (CNNs) were also
suggested to identify abnormal LVEFs from ECGs (≤ 35%
[5], ≤ 50% [6]). Though the CNNs seem promising, their
lack of interpretability could hinder clinical adoption. In-
deed, it is not obvious which ECG patterns the CNNs as-
sociate with cardiac contractility.

In this work, we investigate whether LVEF could be es-
timated from a set of explicit ECG parameters using a ma-
chine learning approach. To this aim, we considered two
types of ECG features: ECG intervals and GEH parame-
ters derived from pseudo-orthogonal leads—truly orthog-
onal leads were not available in the data used in our study.

2. Method
2.1. Data

The SHAREE database [7] published on PhysioNet [8]
was initially developed to investigate the usefulness of
heart rate variability analysis in identifying hypertensive
subjects at higher risk of developing vascular events. It
includes 24-h ECG Holter recordings of 139 hypertensive
subjects aged 55 and over (49 females and 90 males, 72
± 7 years on average) recruited in 2012-2013 at the Cen-
tre of Hypertension of the University Hospital Federico II,
Naples, Italy. The ECGs were recorded following a one-
month anti-hypertensive therapy wash-out and are com-
posed of 3 leads (III, V3, V5) sampled at 128 Hz. Each
individual recording is associated with clinical informa-
tion like echocardiographic parameters. 128 subjects had
an ECG effectively matched to a LVEF value.



2.2. ECG pre-processing and delineation
We extracted 1-minute ECG segments every hour be-

tween 5 p.m. and 4 a.m. from each individual 24-h ECG
recording. These segments were then upsampled to 500 Hz
and smoothed following a moving average method with a
window size of 15 samples. Finally, an average of the most
representative heartbeats was computed for each 1-minute
segment.

To delineate the average heartbeats, we used a modified
version of the residual neural network (ResNet) we ini-
tially proposed to estimate the QT interval [9]. The ResNet
automatically detects the following ECG fiducials: P wave
onset, QRS onset and offset, T wave peak and offset.
2.3. Extraction of ECG Parameters

Using the ECG fiducials automatically detected by the
aforementioned ResNet model, we derived the following
parameters:

(a) ECG intervals: PR, QRS, JTpeak, TpeakTend and
QT

(b) Global electric heterogeneity (GEH) parameters:
GEH is based on the concept of the spatial ventricular gra-
dient (SVG) and characterizes the degree of heterogeneity
of total recovery time across the ventricles. We refer the
reader to [10, 11] for a thorough review of SVG and GEH
concepts.

Suppose X , Y and Z, three othogonal or pseudo-
orthogonal leads. We denote the QRS vector VQRS =
(VQRS,x, VQRS,y , VQRS,z) and the T vector VT = (VT,x,
VT,y , VT,z), with Vx, Vy and Vz their projection on the X ,
Y and Z axis respectively. These vectors can be computed
in 2 ways:

(i) Peak vector Vpeak = (Xpeak, Y peak, Zpeak) with
Xpeak, Y peak and Zpeak the amplitude of the signal
X , Y and Z at QRS or T peak

(ii) Mean vector Vmean = (AUCx, AUCy , AUCz) with
AUCx, AUCy and AUCz the area under the QRS or
T wave in X, Y and Z.

The spatial ventricular gradient vector corresponds to
VSV G = VQRS + VT . For each vector Vpeak

QRS , Vmean
QRS ,

Vpeak
T , Vmean

T , Vpeak
SV G and Vmean

SV G , we compute the eu-
clidean norm ∥V∥, the azimuth α(V) and the elevation
ε(V). We also compute:
- W = ∥Vmean

QT ∥, Wilson’s ventricular gradient
- θpeakQRS,T and θmean

QRS,T the QRS-T angle for peak and mean
vectors respectively
- AUCQRS,vmag , AUCT,vmag and AUCQT,vmag the
AUCs computed from the vector magnitude lead.

Since Frank XYZ leads were not available in the SHA-
REE database, we formed pseudo-orthogonal leads from
the 3 leads available: X ≈ V5, Y ≈ III and Z ≈ -V3.
2.4. ECG-based LVEF estimator

Features. We considered the following 37 fea-
tures as inputs of our LVEF estimator: PR, QRS,

JTpeak, TpeakTend and QT intervals, ∥Vpeak
SV G∥, ∥Vpeak

QRS∥,
∥Vmean

QRS ∥, ∥Vpeak
T ∥, ∥Vmean

T ∥, α(Vpeak
QRS), α(Vmean

QRS ),
α(Vpeak

T ), α(Vmean
T ), α(Vpeak

SV G), α(Vmean
SV G ), ε(Vpeak

QRS),
ε(Vmean

QRS ), ε(Vpeak
T ), ε(Vmean

T ), ε(Vpeak
SV G), ε(Vmean

SV G ),
AUCQRS,x, AUCQRS,y , AUCQRS,z , AUCT,x, AUCT,y ,
AUCT,z , AUCQT,x, AUCQT,y , AUCQT,z , W , θpeakQRS,T ,
θmean
QRS,T , AUCQRS,vmag , AUCT,vmag and AUCQT,vmag .

Machine learning (ML) models. Using Python’s
Scikit-learn library, we compared models for LVEF es-
timation: linear regression (Linear), ridge regression
(Ridge) and support vector regression (SVR). For the SVR
model, we tested 3 different kernels, namely linear, poly-
nomial (of degree 2) and radial basis function (RBF).

Hyperparameter optimization. We split the 128 sub-
jects with matched ECG and LVEF in the SHAREE
database in two splits of equal size S1 and S2. When appli-
cable, we optimized the hyperparameters of the ML mod-
els through grid-search on S1, which was split into train-
ing and validation sets of equal size for this purpose. We
kept the parameters yielding the lowest mean absolute er-
ror (MAE) and the highest Pearson correlation coefficient
(r) on the validation set. Prior to model fitting, the ECG
features were transformed with a robust scaler.

Evaluation. For bootstrap evaluation of the models, we
resampled S1 with replacement (same size) 1000 times.
Each time, we fitted the given model on the resampled ver-
sion of S1 and evaluated it on S2. All average ECG heart-
beats extracted between 5 p.m. and 4 a.m. were included
in the training (S1) and test (S2) sets. When not bootstrap-
ping, we trained a single model on all 64 subjects in S1
without resampling. In addition to MAE and r scores, we
also computed root mean squared errors (RMSE).

3. Results
Table 1 details the bootstrap scores of each ML model

on S2. The Ridge model performs best, yielding a mean
absolute error of 9.5%, 95% CI [8.1%, 11.3%]. Figure 1.A
shows the Bland-Altmann plot and scatterplot between the
ground-truth and LVEF predictions for all average ECG
heartbeats extracted between 5 p.m. and 4 a.m. and ob-
tained with the Ridge model trained on the whole S1 (with-
out resampling). Overall, the model yields good LVEF
estimates though lower LVEF values seem more difficult
to predict from the ECG parameters. This is possibly be-
cause these abnormal cases were less represented in the
SHAREE database and, subsequently, in the training set.
Indeed, there were only 6/64 subjects with a LVEF ≤ 45%
in S1 (11/64 in S2).

Figure 1.B shows that the 10 most important ECG
features to the Ridge model are, in this order:
AUCQRS,vmag , ∥Vpeak

QRS∥, ∥Vmean
T ∥, PR, ε(V mean

SV G ),
∥Vpeak

T ∥, AUCT,vmag , ε(V peak
T ), α(V peak

T ) and α(V mean
T ).



Table 1. Bootstrap results.

Model Kernel Regularization MAE [95% CI] RMSE [95% CI] r [95% CI]
Linear – – 17.419% [11.88%, 25.19%] 21.137% [15.38%, 28.7%] 0.096 [-0.21, 0.39]
Ridge – α = 34 9.489% [8.12%, 11.27%] 12.542% [10.59%, 14.93%] 0.356 [0.09, 0.53]
SVR Linear C = 0.2 9.663% [8.04%, 11.94%] 12.976% [10.68%, 15.9%] 0.314 [0.05, 0.5]
SVR Polynomial C = 19 12.613% [9.7%, 16.01%] 16.282% [12.76%, 20.3%] 0.259 [-0.04, 0.49]
SVR RBF C = 3 11.492% [8.85%, 14.55%] 15.114% [11.72%, 18.78%] 0.298 [0.01, 0.52]
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Figure 1. Evaluation of the Ridge model on S2. A, Bland-Altmann plot (left) and scatterplot (right) of actual versus predicted LVEF (N = 768). The
black line on the Bland-Altmann plot corresponds to the mean difference between actual and predicted LVEF and the red lines to the limits of agreement
(LOA: mean ± 1.96 std). The black line on the scatterplot corresponds to an ideal fit where actual and predicted LVEF are in perfect agreement (y=x).
Predictions were made for each of the N = 12x64 = 768 average ECG heartbeats extracted between 5 p.m. and 4 a.m. for each subject in S2. B, Top 10 of
ECG features based on ridge coefficients. C, Prediction range vs actual LVEF (N = 64). The former is computed as the difference between the maximum
and minimum LVEF predictions for a given Holter recording. D, Differences between actual and predicted LVEF across ECG extraction timepoints.

Figure 1.C shows that the Ridge model is fairly con-
sistent in predicting the LVEF from average ECG heart-
beats extracted from the same individual Holter recording.
Indeed, except for few cases, the prediction ranges, com-
puted as the differences between maximum and minimum
predictions, are reasonable, generally lower than 15%.
This is further illustrated in Figure 1.D, which shows that
the performance of the model on S2 is consistent across
ECG extraction timepoints.

4. Discussion
Our results suggest that by leveraging ECG intervals and

GEH parameters, we could obtain fairly accurate LVEF
estimates. To our knowledge, this is the first study to pro-
pose direct LVEF estimation based on these ECG param-
eters. Indeed, many studies have investigated whether the
ECG could serve for early diagnosis of cardiac contractile
dysfunction but most have focused on LVEF classification
[5,6,12–15]. Alkhodari et al. [15] also leveraged heart rate
variability features to build a LVEF regressor.

Because the mechanical activity of the heart stems from
electrical excitation, it is reasonable to assume that car-

diac structural changes are reflected on the ECG. The 2
most important ECG features to the Ridge model are re-
lated to the QRS amplitude and area (cf. Figure 1.B). This
might further confirm the association between subtle QRS
changes and LVEF reduction [16]. Futhermore, 6 out of
the 10 most important features are specific to the T wave.
This is consistent with other studies that found a relation-
ship between repolarization heterogeneity and mechanical
dispersion [3, 11, 17].

Though our model does not seem to be drastically im-
pacted by the time of ECG sampling, the few cases where
the prediction range for a given 24-h Holter is significant
(cf. outliers in Figure 1.C) could be explained by circadian
changes of the LVEF [18] or the use of non-resting ECG
segments. In the latter case, we could improve our ECG
pre-processing pipeline to only estimate LVEF based on
resting ECG data.

5. Conclusion
In this study, we showed that ECG intervals and GEH

parameters—some of which have been shown to be as-
sociated with myocardial mechanics—are useful to esti-



mate LVEF. Overall, our model is fairly accurate, specially
when predicting normal to mid-range LVEF values. This
ECG-based LVEF estimator could therefore be a viable
tool to monitor subtle changes in cardiac contractility. In
the future, we will explore the estimation of other echocar-
diographic parameters, like global longitudinal strain, that
are more representative of contractility than LVEF.

This study will be followed by a local clinical study
(CHRU de Nancy) to assess the usefuleness of our method
in detecting cardiac contractile dysfunction in a high-risk
population with no diagnosed ECG abnormalities.
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