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Abstract

The aim of this study is to improve the prediction of long-1

term outcomes in patients with atrial fibrillation solely us-2

ing electrogram (EGM) features. We developed three dis-3

tinct models based on data from a cohort of N = 5614

patients, each targeting different aspects of EGM analysis:5

• Principal Component Analysis (PCA): We applied PCA6

to analyze the variances of eigenvectors projecting more7

than a fixed threshold of the overall variance (15%). To8

identify common projection axes among these eigenvec-9

tors, we employed the k-means algorithm for clustering.10

• Auto Regressive: This technique involves applying a bi-11

jective transformation to the coefficients, which are subse-12

quently used as input for various machine learning classi-13

fiers, including Random Forest or Support Vector Classi-14

fier.15

• Feature Engineering: We performed feature engineer-16

ing by extracting voltage, rate, and shape similarity met-17

rics from raw EGM (Electrogram) data.18

1. Introduction19

Prior studies [1] have sought to forecast long-term out-20

comes following atrial fibrillation (AF) ablation by incor-21

porating clinical variables, structural data, and intracardiac22

electrograms (EGM), but with only modest success. Our23

aim was to ascertain the predictive capacity of global elec-24

trogram data exclusively in AF patients, particularly with25

respect to acute and procedural success after ablation.26

2. First approach - EGM Variance through27

clustering28

2.1. Hypothesis29

We hypothesized that explainable machine learning – us-30

ing principal component analysis (PCA) combined with31

unsupervised clustering of EGM may reveal novel features32

that predict arrhythmia freedom after AF ablation.33

2.2. Method34

We studied N=561 AF patients (65.0±10.4 yrs , 27.6% fe-35

male) in whom unipolar EGM were recorded at 64-sites.36

Figure 1. Basket Sensors to collect EGM

Our goal is to uncover concealed information within the37

variance of the Electrogram (EGM), which correlates with38

the long-term outcomes of patients. Throughout the re-39

mainder of this study, we will work with a set of Xi ∈40

RN×T , where N = 64, and T denotes the number of data41

points in each time series for the i-th patient.42

Initially, we analyze the patients independently to iden-43

tify patterns (or deviations) in the variance of their data44

sets. Subsequently, by leveraging this knowledge, we seek45

linear projections that maximize (or minimize) the vari-46

ance for one group in comparison to the other.47

2.2.1. Standardizing the data and selecting48

the right frequency49

To analyze the variance within patients’ Electrogram50

(EGM) data, it is essential to standardize the dataset [2].51

This is achieved through the following affine transforma-52

tion:53

X̃ =
X − E

[
X
]

σX

Once this standardization is completed, we observed54

that the sampling frequency significantly influences the55

analysis. We aimed to strike a balance between a high56

frequency (resulting in a large volume of data) and a low57



frequency (resulting in a smaller volume of data). Con-58

sequently, for the remainder of our work, we opted for a59

frequency of 400 Hz, which represents a favorable com-60

promise.61

2.2.2. Singular Value Decomposition and62

Variance Selection63

Various methods have been developed for studying dataset
variance, with PCA [3] standing out as particularly effi-
cient. Therefore, we decided to leverage the mathematical
principles of PCA to serve our specific objectives. Our
work commences with a Singular Value Decomposition
(SVD) on the dataset:

X = USV T

where UTU = IN , V TV = IT , S ≥ 0, and X ∈64

RN×T .65

By definition, the columns of U are the output eigenvec-66

tors, and the columns of V are the input eigenvectors, with67

Si,i as the corresponding singular values.68

In our specific case, we have N = 64 and T = 400×5869

(a frequency of 400 Hz for 58 seconds). Since our interest70

lies in forecasting the output, we will focus exclusively on71

the output eigenvectors, which are represented by U .72

To identify significant eigenvectors, we examine the73

variance of the i-th eigenvector of U , denoted as Σi,i, and74

select only those with a substantial variance exceeding a75

threshold of 15% of the total variance:76

J(X) = {i ∈ N |Σi,i > 0.15V }

where V =
∑

j Σj,j represents the total variance.77

Finally, for a patient with EGM X , we define the set of78

eigenvectors with significant explanatory power as:79

Eig(X) = {Ui | i ∈ J(X)}

Each Ui represents an axis of projection where the vari-80

ance along it is Σi,i. For instance, if we have:81

X =


x1

x2

...
xN

 Ui =


u1,i

u2,i

...
uN,i


Then the linear projection along the axis Ui is given by:82

UT
i X =

N∑
j=1

uj,ixj

Here, xj represents an EGM time series, and by per-83

forming this linear combination using Ui, we create a new84

representation that captures strong explanatory power in85

terms of variance.86

2.2.3. K-means Algorithm for the Eigenvec-87

tors88

After computing Eig(X) for each patient, we aggregate89

all the eigenvectors into two primary sets: KRecurrence and90

KNon Recurrence.91

KRecurrence =
⋃

X patients recurrence

Eig(X)

KNon Recurrence =
⋃

X patients non recurrence

Eig(X)

The subsequent step is quite intuitive: we aim to identify92

common directions within each set to distinguish projected93

variance based on group characteristics.94

Given that we are working in high dimensions (N =95

64), we sought an effective algorithm that converges96

quickly. The widely recognized K-means algorithm [4]97

emerged as a robust method for this purpose:98

Algorithm 1 k-means
1: procedure KMEANS((x⃗1, ..., x⃗N ),K)
2: (s⃗1, ..., s⃗K) ←

SelectRandomSeeds((x⃗1, ..., x⃗N ),K)
3: for k ← 1 to K
4: do µ⃗k ← s⃗k
5: while stopping criterion has not been met do for

k ← 1 to K
6: for n← 1 to K
7: do j ← argmin∥µ⃗i − x⃗n∥
8: wj ← wj ∪ {x⃗n}
9: for k ← 1 to K do
10: µ⃗k ← 1

|wk|
∑

x⃗∈ωk
x⃗

11:
12: return {µ⃗1, ..., µ⃗K}
13:

2.2.4. Centroid Selection for Discrimination99

After applying the K-means algorithm to the two data sets,100

KRecurrence and KNon Recurrence, we obtain two sets of cen-101

troids: CRecurrence and CNon Recurrence. These sets contain the102

common axes of projection for the two categories.103

To determine which centroids discriminate the most
from the others, we define a loss function for a given di-
rection µ as follows:

L(µ,X) = E
[
µT XXT µ

]
+ 2 V

[
µT XXT µ

]
This function was designed to weigh both the expected

value of the projected variance and the standard variation
of it, with weights ( 13 ,

2
3 ). Therefore, for a centroid µ ∈ C,



we aim to maximize or minimize the following quantity:

L(µ) = L(µ,XRecurrence)− L(µ,XNon Recurrence)

Using the training sets CTRAIN Recurrence and CTRAIN Non Recurrence,
we define the Monte Carlo estimator

L̂(µ) = L̂(µ,XRecurrence)− L̂(µ,XNon Recurrence)

with

L̂(µ,XR) =
1

m

∑
XR

µTXXTµ+
2

m− 1

∑
XR

(
µTXXTµ−Xn

)2
Following this procedure, we select the two centroids that
maximize and minimize L:

µRecurrence = argmax
µ∈CTRAIN Recurrence

L(µ)

µNon Recurrence = argmin
µ∈CTRAIN Non Recurrence

L(µ)

Finally, we construct two directions where the projected104

variance should be maximal (resp. minimal) for the Re-105

currence Group vs. the Non Recurrent one.106

2.3. First Results107

A total of N = 390 patients experienced freedom from108

arrhythmia (AF and AT) for less than one year after the109

blanking period, constituting the ”Freedom” group. Addi-110

tionally, N = 171 patients had a recurrence, forming the111

”Recurrence” group.112

We then computed and plotted the projected variance113

from Principal Component Analysis (PCA) of AF EGM in114

both the recurrence and freedom groups. This analysis al-115

lows us to evaluate the discriminatory power of one group116

versus the other.117

When examining the projected variance for the ”Free-118

dom” group (see Figure 2), we observe that it serves as119

an effective means of classifying patients based on their120

labels. Notably, the variance was higher in the ”Recur-121

rence” group compared to the ”Freedom” group (µ =122

37.1%±21.3% vs. µ = 29.5%±15.9% of the global vari-123

ance, median p-value = 0.21 for the Kolmogorov-Smirnov124

test) when considering the average distribution across 50125

independent training/testing iterations.126

Figure 2. Proportion of the projected variance for an
eigenvector of the Recurrence group

The analysis of the projected variance distribution re-127

vealed the presence of small clusters among patients in the128

”Recurrence” and ”Freedom” groups. These clusters rep-129

resent potential patterns that can be leveraged as relevant130

inputs for a neural network aimed at predicting a patient’s131

state.132

2.4. Conclusion for Variance Clustering133

In summary, the application of PCA and unsupervised ma-134

chine learning techniques provided valuable insights into135

the characteristics that can predict outcomes following AF136

ablation. These methods shed light on how Electrogram137

(EGM) data carry patient-specific information.138

However, it’s important to note that the projected vari-139

ance along eigenvectors, while informative, may not pro-140

vide a robust and efficient means of forecasting recurrence141

one year post-ablation. As a next step, we propose the142

exploration of more elaborate non-linear classifiers, cou-143

pled with feature engineering, to enhance the accuracy of144

long-term outcome predictions. Specifically, we intend to145

investigate Auto-Regressive models in combination with146

complex classifiers.147

This path represents a promising direction for further148

research and may offer more accurate forecasts of patient149

outcomes following AF ablation.150

3. A More Standard Approach - ML151

Classifier152

3.1. Hypothesis153

Our hypothesis is that employing explainable machine154

learning, using standard classifiers combined with auto-155

regressive models and handcrafted features extracted from156

EGM data, can provide additional information to comple-157

ment PCA-based predictions, enhancing the ability to pre-158

dict arrhythmia freedom following AF ablation.159

3.2. General Classifiers160

A variety of classifier types can be employed for this type161

of feature set, including ensemble learning methods, lin-162

ear classifications, binary classifications, and more. We163

have explored multiple classifier types, including Random164

Forest, Support Vector Machine (SVM), Adaboost, Naive165

Bayes, and Logistic Regression. Among these, we aim to166

identify the most robust classifier based on the Area Under167

the Curve (AUC) score metric.168

3.3. Method169

Utilizing the same dataset (with N = 561 patients), we170

aim to construct a robust classifier capable of predicting171

long-term outcomes using auto regressive models. Al-172

though the majority of patients have EGM data from the173

left atrium (NLA = 517), there are NRA = 39 patients174



with EGM data exclusively from the right atrium. To ac-175

count for this variation, we introduce an additional categor-176

ical column to the 64 × (α1, α2, σ
2) dataset, with values177

in {0, 1} indicating the atrium area from which the EGM178

data originate.179

With our dataset prepared and classifier models selected,180

we proceed to determine the optimal set of hyperparame-181

ters for each model. This is achieved through a Grid Search182

Cross-Validation approach, which combines grid search183

with cross-validation to ensure robust hyperparameter se-184

lection.185

Figure 3. Grid Search Representation in a 2D space

3.4. Results186

The initial phase involves the selection of the ”best” model,187

based solely on the training set. To determine the relative188

robustness of one classifier over another, we implement a189

training-validation strategy utilizing the first training set.190

The results, in terms of the Area Under the Curve (AUC)191

metric for hyperparameters fitted using a grid search cross-192

validation approach, are presented in Figure 4.193

Figure 4. Comparison of the different classifiers in term
of AUC-metric

Following the results presented in Figure 4, it is evident194

that the Random Forest Algorithm emerges as the most ro-195

bust classifier among the five considered, yielding an aver-196

age Area Under the Curve (AUC) of AUCaverage = 66.8%.197

Surprisingly, the Support Vector Machine Classifier, a rel-198

atively simple linear classifier, ranks second in terms of199

AUC, nearly matching the performance of the Naive Bayes200

classifier.201

However, it is noteworthy that even with the Random202

Forest being the best-performing classifier, the AUC re-203

mains relatively low and falls short of our initial expecta-204

tions based on the hypothesis.205

With the training set learned, we proceed to calculate206

the results for the Holdout set with all classifiers, even207

though we have already chosen the Random Forest as our208

preferred classifier.209

AR Scores for Long Term Outcomes (1y)
Classifier RF SVC NB Boost LR
AUC 0.71 0.63 0.55 0.62 0.53

Feature Engineering
AUC 0.72 0.6 0.49 0.33 0.51

210

Figure 5. Holdout results in term of AUC-metric

An Area Under the Curve (AUC) of 0.71 achieved by211

the Random Forest classifier indicates that the model has212

indeed captured characteristic information within the Elec-213

trogram (EGM) data. However, it falls short of achieving214

perfect classification of patients with recurrence.215

3.5. Conclusion216

In conclusion, our exhaustive analysis of electrogram data217

in patients with atrial fibrillation (AF) provides limited pre-218

dictive value for outcomes following AF ablation. The219

application of PCA-Clustering and AR-Classifier revealed220

features that could predict AF ablation outcomes with only221

modest success. This study sets a certain ceiling for elec-222

trographic predictors, suggesting that either sophisticated223

feature engineering or the incorporation of alternative data224

sources is necessary to improve prediction.225
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