
Predicting Neurological Outcome After Cardiac Arrest 

Using a Pretrained Model with Electroencephalography Augmentation 

Dong-Kyu Kim1, Hong-Cheol Yoon2, Hyun-Seok Kim3, Woo-Young Seo3, Sung-Hoon Kim1,4 

1Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan 

College of Medicine, Seoul, Republic of Korea 
2Biomedical Computing Core, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 

Republic of Korea 
3Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 

Seoul, Republic of Korea 
4Signal House Inc., Seoul, Republic of Korea 

 

Abstract 

As part of the George B. Moody PhysioNet Challenge 

2023, we developed a machine learning approach that uses 

electroencephalogram (EEG) to predict the neurological 

recovery of patients following cardiac arrest. The limited 

size of EEG datasets presents challenges. Our team, 

ComaToss, developed a novel approach that combines 

pretrained models and data augmentation (DA) to address 

the challenge of limited EEG. We employed a deep 

learning model, ConvNeXt for feature extraction of EEG. 

Pretrained models improved performance, with ConvNeXt 

achieving the best results. Furthermore, our DA methods, 

including temporal reversal, polarity inversion, and 

CutMix, enhanced model robustness. The combination of 

polarity inversion and CutMix outperformed other 

methods. Our model received a Challenge score of 0.79 

(ranked 2th out of 36 teams) on the hidden test set. 

Proposed methods show promise in mitigating the 

limitations associated with limited EEG datasets, 

potentially improving the accuracy and reliability of 

prognostic assessments. 

 

 

1. Introduction 

Electroencephalography (EEG) for brain monitoring 

aims to reduce the subjectivity of neurological prognosis 

after cardiac arrest [1]. Machine learning (ML)-based EEG 

analysis can assess EEG patterns, exploit data dynamics, 

and automate the analysis of continuous EEG data, thereby 

increasing the accessibility of brain monitoring, especially 

in underserved regions where neurological experts are 

scarce. However, most studies rely on small datasets, often 

less than 100 patients from single hospitals, which is a 

significant barrier to high-quality ML applications [2]. 

The use of pretrained models, derived from deep 

learning frameworks and trained on large and diverse 

datasets, has shown promise in the field of EEG analysis 

[3]. By fine-tuning these pretrained models on EEG-

specific data, it becomes possible to effectively leverage 

EEG data with the wealth of features and representations 

learned from unrelated domains. This knowledge transfer 

not only improves the efficiency of feature extraction, but 

also contributes to increased classification accuracy, 

especially when dealing with limited EEG datasets. 

Data augmentation (DA) involves creating additional 

samples by applying transformations to the existing dataset 

[4]. This approach shows potential for enhancing the 

accuracy and stability of classification, particularly in the 

context of EEG data. These augmented samples enrich the 

training dataset, increasing its diversity and capturing 

variations in EEG patterns. This enrichment allows for a 

more robust and generalised model, reducing the risk of 

overfitting and increasing the reliability of EEG-based 

classification. 

In this study, we propose a strategy that integrates two 

key components, pretrained models and DA. Our aim is to 

demonstrate their effectiveness in overcoming the 

challenges posed by limited EEG datasets, ultimately 

leading to more accurate and reliable prognostic 

assessments in the field of neurological recovery. 

 

2. Methods  

In this section, we provide a comprehensive overview 

of the dataset used in our study and the preprocessing steps 

applied to the EEG signals. Additionally, we delve into the 

architecture of our deep learning model, including the 

utilization of pretrained models and data augmentation 

techniques. Finally, we outline the experimental settings 

employed for evaluating the model's performance. 



2.1. Dataset and preprocessing 

The data employed in this study is sourced from the 

training dataset of the PhysioNet Challenge (PNC) 2023 

[5], which serves as a pivotal resource for investigating and 

advancing the field of cardiac arrest research. This dataset 

was meticulously curated from the international cardiac 

arrest research consortium (I-CARE) database [6, 7]. The 

I-CARE database is a comprehensive repository 

comprising an array of physiological signals and critical 

clinical information, including patient age and gender, 

drawn from a diverse cohort of 607 individuals across 

seven different hospitals. 

This dataset specifically comprises EEG signals 

collected over a maximum duration of 72 hours from 

comatose patients following cardiac arrest, along with 

associated neurological outcomes. These outcomes are 

categorized into two primary groups: good outcomes and 

poor outcomes. Good outcomes are defined by a cerebral 

performance category (CPC) score of 1 or 2, indicating 

either minor or moderate neurological impairment. 

Conversely, poor outcomes are characterized by CPC 

scores ranging from 3 to 5, indicating significant 

neurological impairment, extended coma, or, in the most 

severe cases, mortality. This comprehensive and diverse 

dataset forms the basis for the rigorous analysis and 

modeling conducted in our research, allowing us to 

investigate and enhance our understanding of predicting 

neurological outcomes in the context of cardiac arrest 

scenarios. 

The preprocessing of the EEG signal is conducted in the 

following sequential manner: First, records with a duration 

of less than 5 minutes for each participant are excluded. 

Subsequently, we address the channel configuration of the 

raw EEG data. Initially, it comprises 19 channels, but we 

perform a transformation using the longitudinal bipolar 

referencing technique, resulting in a reduction to 18 

channels. Next, a Butterworth bandpass filter with a 

specified frequency range of 0.5 to 35 Hz is systematically 

applied, followed by resampling to a sampling rate of 64 

Hz. This step isolates the relevant frequency components 

within the EEG signals while effectively mitigating 

unwanted noise, thereby improving the signal-to-noise 

ratio. Finally, we segment the preprocessed EEG signals 

into intervals of 10 seconds each. Moreover, segments 

where the mean and variance values across all channels are 

equal to 0 are removed, resulting in a total of 35,097 

records used for training. Subsequently, each segment 

undergoes z-score-based normalization to ensure 

uniformity in the dataset. 

 

2.2. Deep learning model 

The comprehensive structure of our model is illustrated 

in Figure 1. This predictive process entails a two-step 

approach designed to exploit the information inherent in 

each EEG record. In the initial stage, we train each record 

with pseudo-labels representing the subject's outcome. 

EEG signals undergo preprocessing involving data 

augmentation and feature extraction using a pretrained 

model. The extracted features are then utilized to compute 

probability values through a multi-layer perceptron (MLP) 

head. Subsequently, we calculate probability values for 

each record using a sigmoid activation function. These 

individual probabilities are then aggregated and averaged 

to formulate a prediction about the subject's overall 

outcome. This two-step approach enables us to distill 

meaningful insights from the EEG data and significantly 

contributes to the accuracy of our predictions. 

To extract pertinent features related to neurological 

outcomes from EEG signals, we harnessed the power of 

the ConvNeXt model [8]. The ConvNeXt model, 

renowned for its superior ability to discern subtle features 

and intricate patterns in images, outperforms traditional 

convolutional neural network (CNN)-based models. Our 

proposed model was initialized with the pre-trained 

   
Figure 1. The proposed model architecture for predicting neurological outcomes. The framework comprises two stages: 

record-level and subject-level. At the record-level, EEG signals processed through data augmentation and a pretrained 

model to extract features. These extracted features are subsequently used to calculate probability values via a multi-layer 

perceptron (MLP) head. At the subject-level, the probability values from each record are averaged. 

 



weights of a ConvNeXt model trained on the ImageNet 

dataset and subsequently underwent transfer learning. The 

EEG features extracted by the ConvNeXt model are then 

processed through a MLP head to predict the pseudo-labels. 

To enhance the diversity of EEG signals while 

preserving specific patterns, we implemented DA methods 

commonly utilized in audio processing. These methods 

include reversing the signal sequence (Temporal reversal, 

TR), inverting signal polarity (Polarity inversion, PI), and 

combining two signals (CutMix, CM) [9]. During the 

training process, each augmentation method is sequentially 

applied with a probability of 0.3, effectively introducing 

variations into the data. Importantly, these augmentation 

techniques are not employed during the validation and 

testing phases, ensuring that the model generalizes well to 

unseen data while still benefiting from the augmented 

training dataset. 

 

2.3. Experimental settings 

To assess the performance of pretrained models, we 

conducted a comparative analysis involving two additional 

CNN models, namely ResNet-50d [10], EfficientNet-v2 

[11], in addition to ConvNeXt. These three CNN models 

have comparable parameter counts, measuring at 25.6 

million, 21.5 million, and 28.6 million, respectively. We 

conducted a comparison of transfer learning results both 

before applying pre-trained weights and after applying pre-

trained weights in our evaluation. 

The optimization process was conducted using the 

Adam optimizer with a learning rate set to 0.0001. Our 

model underwent training for a total of 20 epochs, 

employing a batch size of 16 for each training iteration. To 

ensure the robustness of our results and validate the 

model's generalization ability, we performed 5-fold cross-

validation on the dataset. This cross-validation was 

meticulously stratified based on labels and the ratio of data 

originating from different hospitals, thereby ensuring a 

rigorous assessment of our model's performance across 

diverse data subsets. 

 

3. Results  

In this section, we present the outcomes of our 

experiments, focusing on the impact of pretrained models 

and data augmentation techniques on model performance. 

Additionally, we provide an overview of our team's 

performance during the official phase of the PNC 2023 

challenge. 

 

3.1. Pretrained models 

The receiver operating characteristic (ROC) curves and 

true positive rate (TPR) at a false positive rate (FPR) 

threshold at 0.05) before and after applying pretrained 

models are presented in Figure 2 (A). The results indicate 

that, for all CNN models, using pretrained models resulted 

in better performance than not using them. The ConvNeXt 

with pretrained models exhibited the highest performance 

among the models. The pretrained ConvNeXt exhibited the 

highest performance based on the TPR criterion. 

 
 

 
 

Figure 2. Results of ROC curves and TPR at a FPR of 

0.05, using 5-fold cross validation on training data. The 

red vertical dashed line represents the FPR threshold at 

0.05. (A) represents results based on pretrained (PT) 

models, where the solid line indicates results using PT 

models, and the dashed line indicates results without using 

them. (B) represents results based on data augmentation 

(DA). Temporal reversal (TR), Polarity inversion (PI), 

and CutMix (CM) 

 



3.2. Data augmentation 

The ROC curves and TPR based on DA combinations 

are presented in Figure 2 (B). When applying each of the 

three DA methods individually, except for PI, both TR and 

CM methods showed performance improvements 

compared to not using DA. When DA was performed with 

two combinations, TR and PI combination exhibited lower 

performance compared to applying only TR, while the 

combination with CM showed better performance. In the 

case of the three combinations, they showed lower 

performance than the two combinations. The combination 

of PI and CM demonstrated the highest performance.  

 

3.3. PhysioNet challenge result 

Ultimately, in official scores of the PNC 2023, our team 

(ComaToss) achieved performance scores of 0.24, 0.59, 

0.73, and 0.79 based on the challenge score criteria for 12, 

24, 48, and 72 hours, respectively. Each result of training, 

validation, and ranking of the official phase are presented 

in Table 1. 

 

Training Validation Test Ranking 

0.69 ± 0.09 0.61 0.79 2/36 

Table 1. TPR at a FPR of 0.05 (the official Challenge score) 

for our final selected entry (team ComaToss), including the 

ranking of our team on the hidden test set. We used 5-fold 

cross validation on the public training set, repeated scoring 

on the hidden validation set, and one-time scoring on the 

hidden test set. 

 

4. Discussion 

This study presents a promising approach to improving 

EEG-based outcome predictions through the integration of 

pretrained models and DA methods. Pretrained models, 

particularly ConvNeXt, improved TPR performance. DA, 

especially when combining techniques like TR, PI, or CM, 

enhanced model robustness and predictive accuracy. These 

combined methods have shown potential in elevating the 

accuracy and reliability of neurological outcome 

predictions, with significant implications for enhancing 

clinical decision-making and advancing patient care. 
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