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Abstract

Aims: As part of the George B. Moody PhysioNet
Challenge 2023, we proposed a method for the
neurological recovery of patients following cardiac arrest
by a convolutional neural network with time-sensitive
features to realize the automated prognosis prediction for
these patients after cardiac arrest.
Methods: Firstly, we selected EEG records for the first

72 hours to build the input signal. During the data
preprocessing, we used 3 strategies to get EEG segments
including FFT EEG segments, time EEG segments, and
enhanced time EEG segments. In our model, we designed
3 stacked Conv Blocks to extract features in each hour
respectively. Then we designed the Time-sensitive
Learning Block to learn the time-sensitive weights of
these 72 hours. The features extracted by Conv Blocks
were scaled by the time-sensitive weights so that we got
the time-sensitive features. Then these features were sent
into 3 Residual Blocks to get the final features which
were used to predict the output of the model.
Results: The model with the enhanced time EEG

segments as the input and the SE Block in the Time-
sensitive Learning Block performed best in the 5-fold
cross validation experiments. Our team, Aircas, achieved
the Challenge score of 0.45±0.13 on the open training set
and 0.475 on the hidden testing set with a rank of 20/36.

1. Introduction

These patients who are successful in resuscitation from
cardiac arrest (CA) are facing the risk of severe brain
injury due to cerebral hypoxia and ischemia [1, 2] which
could cause a terrible result like death. There is a need for
prognosis to predict their recovery consciousness of them.
EEG is an objective tool which reflects the brain activity
by potentials. Poor outcomes with low false-positive rates
of prognosis always occur when the EEG keeps persistent
EEG background suppression, burst suppression with
identical bursts, and seizure-like, i.e. ictal interictal
activity on a suppressed background.
The traditional method to get a prognosis from EEG

depends on neurologists with advanced training in
neurophysiology. However not all medical centers hold
neurologists. The method of artificial intelligence has
been used in the field of intelligent diagnosis of the brain,
such as epilepsy detection [3], seizure prediction [4],
Parkinson’s disease recognition [5], and achieves good
performance. The George B. Moody PhysioNet
Challenge 2023 [6] provides access to a large database [7]
assembled by the International Cardiac Arrest REsearch
consortium (ICARE), and hope the participants provide
the prognosis prediction of good and poor patient
outcomes after cardiac arrest by automated analysis
without experts [6,8].
In this study, we proposed a convolutional neural

network to extract time-sensitive features of sequence
signals to provide an automated prediction for patients
after cardiac arrest.

2. Methods

2.1 Dataset

The dataset used in this study was shared by the work
[7]. It was collected by the ICARE from seven hospitals
in Europe and the U.S. During the ICARE dataset, all
records came from 1020 adult patients who were
comatose but the return of heart function after cardiac
arrest with the data of electroencephalography (EEG)
group, electrocardiography (ECG) group, a reference
(REF) group, and another (OTHER) group. Data
recording started within hours of cardiac arrest. The time
of monitoring may last for several hours to days
depending on the patients’ condition.
In our study, only the data of the EEG group from 19

channels ('Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1',
'O2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', and 'Pz') were
used to build the input.

2.2 Data preprocessing



The steps of data preprocessing were as follows:
1. Adjust the length of recording hours. Because

EEG records came from different persons with
different continued care. The recording hours were
not the same for these recordings. In this step, we
cut off EEG records after the 72nd hour. Other
records were abandoned.

2. Resample the data to 100 Hz. The EEG records
were collected in seven hospitals by different
facilities with different sampling frequencies. We
resampled them to the same frequency.

3. Remove noise by a band-pass Butterworth filter
from 0.5 to 30 Hz. Due to there were some special
components in EEG signals including the delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and
beta (13–30 Hz) rhythms, all EEG data were
filtered by a band-pass filter.

4. Segment EEG records. The length of the EEG
records was very long. In this step, we designed 3
operations to get EEG segments. If there were no
EEG records we used 0 to fill the missing value.
A. Apply the Fast Fourier Transform (FFT) to

EEG data in each channel. Then the FFT
samples between the frequency from 0.5 and
30 Hz were picked up as EEG segments.

B. Choose the first 20s data in each hour as
EEG segments.

C. Cutting 5 different EEG epochs with the
length of 20s as EEG segments to achieve
data enhancement. One record generated 5
samples. The training samples had increased.

5. Resample EEG segments to 1000 points. The three
EEG segments in step 4 had different sample
points. We resample them with the same length to
get a fixed input shape of (19,1000).

6. Normalize EEG segments for each EEG segment
in the channel dimension.

2.3 The architecture of model

The architecture of model is shown in Figure 1. First of
all, we designed Conv Blocks to extract features in 72
hours respectively. Then, features were concatenated
together. After that, we designed a block named Time-
sensitive Learning Block to learn the time-sensitive
weights of the 72 hours from the concatenated features.
The time-sensitive weights were used to adjust the
concatenated features by multiplication to get the time-
sensitive features. Next, we applied three Residual Blocks
to extract depth features from the time-sensitive features.
The output of the Residual Block was flattened and sent
to a fully connected layer to get the predicted label.

Conv Block 1 2 3
Convolutional kernel 3*3@16 3*3@16 3*3@16
Convolutional stride 1*1 1*1 1*1
Batch normalization default default default
Activation ReLU ReLU ReLU
Max pooling 3*3 1*3 -
Table 1. The parameter setting in the 3 stacked Conv

Blocks.

Figure 1. The architecture of our model.



As shown in Figure 1, there were 4 layers in the Conv
Block including a convolution layer with the kernel size
of (3,3) and a stride of (1,1), a batch normalization layer,
an activation layer with a function of ReLU, and a max
pooling layer. In our model, we stacked 3 Conv Blocks
and the parameter setting was slightly different in each
Conv Block, especially the number of the convolutional
kernels in the convolution layer and the setting in the max
pooling layer. In the third Conv Block, there was no max
pooling layer. The concrete parameters are listed in Table
1.
The Conv Block output 72 groups of feature maps with

the shape of (64, W, H). All of them were concatenated
into one. We got a group of feature maps with the shape
of (72, 64, W, H) and sent it into the Time-sensitive
Learning Block. To learn the time-sensitive features, we
designed 2 structures, the time-sensitive Squeeze-and-
Excitation (SE) Block and the time-sensitive Long Short-
Term Memory (LSTM).
SE block was proposed by [9] with the aim of learning

the dependency of feature channels to recalibrate the
features. As shown in Figure 1, the time-sensitive SE
Block was made up of a global average pooling layer, a
fully connected layer, and two activation layers. After
being processed by the global average pooling layer, the
shape of concatenated feature maps changed to (72, 64).
Then we used a fully connected layer to learn the time
dependence of the 72 hours and we got the feature maps
with the shape of (72, 1). Then we got the output of this
block with the shape of (72,1) when feature maps were
processed by the activation function of the Sigmoid.
LSTM [10] was a special recurrent neural network that

had shown noteworthy ability to process time series. As
shown in Figure 1, the keys in the time-sensitive LSTM
were two LSTM layers. Before being sent into the LSTM
layers, the feature maps were reshaped from (72, 64, W,
H) to (72, 64*W*H). In the LSTM layers, the output
length in every time step is 1. Hence, all the outputs at
each time step formed a group of features with the shape
of (72,1) after the two LSTM layers. Then we got the
output of this block with the shape of (72,1) when these
features were processed by the activation function of the
Softmax.
We regarded the outputs of the block Time-sensitive

Learning as the weights to scale the concatenated feature
maps by multiplication to enhance the time-related
features. After that, the scaled feature maps were
processed by 3 stacked Residual Blocks.

The implementation of the 3 Residual Blocks was the
same, including 3 convolution layers with the kernel size
(1,1) and the stride (1,1), 3 batch normalization layers,
and 3 activation layers with the function of ReLU. The
shortcut connection was placed between the input of this
block and the position where before the last activation
layer.
Due to the unbalanced numbers of positive samples

and negative samples, we chose the Focal Loss [11] as the
loss function during model training.

3. Results

The George B. Moody PhysioNet Challenge 2023
proposed the Challenge score to evaluate the model
performance. The Challenge score was defined as the true
positive rate at a false positive rate of 0.05. Besides the
Challenge score, the metric accuracy, AUROC, AUPRC,
and the F-measure were computed in the experiment. We
conducted a 5-fold cross validation experiment on the
open training set. We tested different combinations of the
EEG segments and model architectures:
1. Use the FFT EEG segments as input and use the

time-sensitive SE Block as the Time-sensitive
Learning Block.

2. Use the time EEG segments as input and use the
time-sensitive SE Block as the Time-sensitive
Learning Block.

3. Use the time EEG segments as input and use the
time-sensitive LSTM as the Time-sensitive
Learning Block.

4. Use the enhanced time EEG segments as input
and use the time-sensitive SE Block as the Time-
sensitive Learning Block.

The average results of 5-fold cross validation on the
training set are shown in Table 2, and the results of our
model on the hidden validation set and the hidden testing
set are listed in Table 3.

Training Validation Test Ranking
0.45±0.13 0.269 0.475 20/36

Table 3. The scores of our team on the open training set
(5-fold cross validation), the hidden validation set, the
hidden testing set, and the final ranking.

4. Discussions

As described in Section 2.3, we designed two

Model Score Accuracy AUROC AUPRC F-measure
FFT EEG segments + SE Block 0.41±0.06 0.59±0.10 0.62±0.08 0.77±0.08 0.53±0.07
Time EEG segments + SE Block 0.42±0.06 0.64±0.05 0.64±0.07 0.80±0.06 0.48±0.09
Time EEG segments + LSTM 0.41±0.06 0.59±0.10 0.62±0.07 0.78±0.08 0.53±0.07
Enhanced time EEG segments + LSTM 0.45±0.13 0.64±0.06 0.45±0.07 0.80±0.07 0.63±0.07

Table 2. Average results of 5-fold cross validation on the training data.



structures to learn time-sensitive features. We conducted
experiments to evaluate the performance of the two
structures by keeping the input the same but changing the
Time-sensitive Learning Block. As shown in Table 2,
when using the time EEG segments as the input, the
average score of the model with the SE Block was higher
than that of the model with the LSTM. The SE block
learned better time-sensitive features about the changes in
the long records of 72 hours.
As described in Section 2.2, we designed three

methods to generate EEG segments from raw EEG. We
used the SE Block in the Time-sensitive Learning Block
but changed the input. As shown in Table 2, the score of
the FFT EEG segments was lower than that of the time
EEG segments. It can be inferred that time characters
were vital for the task of automated prognosis prediction.
Besides, we compared the effect of data enhancement.

As shown in Table 2, the model with the enhanced time
EEG segments as input achieved the highest score
(0.45±0.13) on the training data. Data enhancement
expanded the training set and improved the generalization
of the model.
We tested the model with the combination of the

enhanced time EEG segments and SE Block on the
hidden validation set obtaining a score of 0.269 and on
the hidden testing set obtaining a score of 0.475 which
ranked 20/36 in Challenge 2023.

5. Conclusions

In this study, we proposed a convolutional neural
network by learning time-sensitive features and depth
features to realize the automated prognosis prediction for
these patients after cardiac arrest. The time series are
more suitable than the frequency series for this task. The
SE block showed better performance than the LSTM to
learn time-sensitive features of the data from 72 hours.
Finally, our team Aircas obtained a score of 0.269 on the
hidden validation set, a score of 0.475 on the hidden
testing set, and a ranking of 20/36 in Challenge 2023.
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