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Abstract

Due to the lengthy information, irregular structure,
and numerous types of distortion and disconnections, an-
alyzing long ECG signals can be difficult. An ECG-
to-image conversion is built enabling the use of image
processing methods and tools for semantic segmentation
that uses neural networks. That segmentation is based
on the ResNet50 network, which is incorporated into the
DeepLabv3 architecture, and is used to identify ventricular
beat fusions and premature ventricular contractions. An
established database is used for training and to assess the
model’s efficacy. The ECG data are converted into images
using thresholding and heat maps, and PyTorch is used to
train the network. The obtained binary masks mark the
found abnormalities with accuracy. The presented method
can help to detect heart anomalies more quickly and accu-
rately by automating the study of long-term ECG readings.

1. Introduction

The semi-automatic processing of long ECG signals is a
problem that has not yet been solved, due to the enormous
amount of information to be processed, lacking uniform
structure, with large doses of distortion of a diverse nature
and periods of disconnection.

While cardiac abnormalities exhibit high variability
among different ECGs or individuals, the proposed method
enables the neural network to extract the key characteris-
tics of the anomaly, thereby achieving generalization of its
appearance given only a few examples.

The conversion of ECG into images has been achieved
in the past, for example, with the use of spectrograms
[1]. However, there are few examples where the conver-
sion to images is done directly. One of them is Elec-
trocardiomatrix (ECM) [2] that demonstrated improve-
ments in the visualization and inspection of cardiac sig-
nals. This technique transforms a 2-dimensional ECG into
a 3-dimensional matrix, enabling comprehensive analysis
of ECG signals.

The presented work aims to establish an ECG-to-image

conversion, similar to ECM but without the need for any
synchronization, that enables the use of well established
and proven image processing techniques and semantic
segmentation tools to facilitate the detection of cardiac
anomalies. Specifically, the focus lies on two specific ab-
normalities: premature ventricular contractions and ven-
tricular beat fusions.

Premature ventricular complexes (PVCs) are common
ventricular arrhythmias observed on ECGs [3]. While in-
cidental PVCs are generally benign, frequent PVCs can
negatively impact left ventricular function and contribute
to heart failure. Also, PVCs can serve as a trigger for
idiopathic ventricular fibrillation. A fusion beat is char-
acterized by the coincidence of a supraventricular and a
ventricular impulse, resulting in a hybrid complex. In the
case of a ventricular fusion beat [4] or fusion PVC, this
occurs when these electrical impulses coincide within the
ventricular chambers. Fusion beats can be observed in con-
ditions such as ventricular tachycardia and accelerated id-
ioventricular rhythm.

2. Methodology

2.1. ECG to Image Conversion

The process starts applying upper and lower thresholds
to prevent the loss of information near the signal’s mean
value. In this case, a 25% threshold has been applied. It is
common to find peaks in ECGs (maxima and/or minima)
of much larger dimensions compared to the true maxima
and minima of the QRS complex, which are usually caused
by the presence of noise. The presence of these dispropor-
tionate peaks in the subsequent conversion of the ECG to
an image results in the loss of most of the genuine signal
information.

In our case, each record was divided into segments of
106 samples and rearranged in a 1000×1000 matrix. Sub-
sequently, each matrix was converted into a full image with
dimensions of 1000 × 1000 pixels using a heat map that
assign different colors to different ECG values. These im-
ages were then re-scaled to 2560×2560 pixels. The whole
process is shown in Figure 1.
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Figure 1. Conversion from ECG to image.

Then, using the provided labels by Physionet for this
dataset, a binary segmentation mask was created from each
image. This mask assigns a value of ”1” (White) to the pix-
els corresponding to the cardiac anomalies targeted for de-
tection. Conversely, pixels in the images that do not corre-
spond to any anomaly are assigned a value of ”0” (Black).

2.2. Network Specifications.

The ResNet50 network, a Residual Network with 50
layers, has emerged as one of the leading networks for se-
mantic segmentation [5]. This work utilizes ResNet50 as
the backbone of a DeepLabv3 architecture to process the
ECG images. For the implementation of the network, the
PyTorch library in Python was utilized.

For each of the training records used, a 2560 × 2560
image was created using their first 106 samples. Sub-
sequently, a predefined number of patches was extracted
from each of these images to build the training dataset.
The test dataset was built using one of the training ECGs
but starting from the 106th sample, thus excluding the data
already used in the training dataset. Since the network ex-
pects input images of size 256 × 256 pixels [6], each im-
age (and its corresponding mask) in the created dataset was
segmented into 100 patches of size 256 × 256. Then the
first 10, 20, 50 and 100 patches of size 256× 256 were ex-
tracted, resulting in a total of 50, 100, 250 and 500 images
that formed four different training datasets.

The implementation of the network utilizes the
DeepLabv3 architecture [7], which is based on the concept
of dilated convolutions and incorporates techniques such
as Atrous Spatial Pyramid Pooling (ASPP). ResNet50 is
chosen as the backbone of the DeepLabv3 architecture.

One of the key steps to ensure good convergence and
learning of the model is the selection of the network’s hy-

perparameters. The most important were the learning rate
that influences the convergence and learning speed of the
model, the batch size that represents the number of training
examples used in each iteration and affects the trade-off
between computation efficiency and model generalization
and the number of steps that determines the total number
of iterations during the training process. After conduct-
ing the necessary experiments, it has been determined that
the optimal combination of hyperparameters consists of a
learning rate of 10−4, a batch size of 32 and 3000 training
steps.

Another crucial parameter for the network is the opti-
mizer, used to update the network’s weights based on the
computed gradients during backpropagation. In our work,
the Adam optimizer [8] was used. This optimization al-
gorithm that combines the benefits of the RMSprop and
Momentum algorithms to improve the learning process of
a model. It adapts the learning rate based on the distribu-
tion of parameters within the model.

Additionally, it is important to establish an appropriate
loss function. The cross-entropy [9] is commonly used as
a loss function in classification problems where the goal is
to minimize the distance between the predicted probability
distribution by the model and the actual distribution and
has been used in this work.

Lastly, during the training, the Intersection over Union
(IoU) metric is calculated. IoU metric is a measure of sim-
ilarity between two sets of pixels in an image [10] and in
the context of semantic segmentation networks is used to
evaluate the quality of the segmentation obtained by the
model.

Finally, the code used in this research is an adaptation
of the one published in [11].
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Figure 2. Segmentation process.

2.3. Experiment Database

For this research, the ”MIT-BIH Long-Term ECG
Database” [12] from Physionet has been employed. This
database comprises 7 long-term ECG, each ranging from
14 to 22 hours, with manually revised beat annotations.
Each of these long-term ECG recordings has been acquired
at a sampling frequency of 128 samples per second. Only 5
of those 7 records were finally used since one of them was
extremely noisy and the other one had no enough labeled
anomalies.

2.4. Predicted Masks Generation

After the training, we have a model that processes
256 × 256 pixel input images and gets a predicted binary
mask. Therefore, to process a complete ECG image, it is
necessary to process each of its patches and then reassem-
ble them into a complete image of 2560 × 2560 pixels.
Figure 2 shows this process.

Once the predicted mask has been reconstructed, we can
get the correspondence between pixels and the initial sam-
ples. To accomplish this, a tool has been implemented to
convert pixel coordinates (height, width) to sample num-
bers and to extract the samples corresponding to anoma-
lous detections. These samples are obtained as a range
rather than a single sample, which is the way the signals
are labeled in Physionet.

3. Experimental Results

The training phase of the network used an NVIDIA RTX
4080 graphics card with 16GB of memory. Using this
card, the average convergence time for the neural network
was approximately 20 minutes, while the average time for
image processing and mask reconstruction was around 15
seconds. On the other hand, once the network has been
trained, the processing of an ECG is not computationally
expensive, so since there is no foreseen need for real-time

implementation of the model, it would be feasible to em-
ploy only CPU for this purpose.

Once the network training is completed, after 3000
training steps, a mean IoU of 0.81 is achieved, while the
cross-entropy loss function reaches a mean value of 0.05.

To assess the effectiveness of the network, one can com-
pare the ground truth mask with the mask predicted by the
network using image processing techniques and libraries.

The following experiments1 have been conducted using
record 14184 as the test set, excluding some initial sam-
ples. This initial sample set was gradually included in the
training dataset to observe the effect it has on anomaly de-
tection accuracy.

After the segmentation, a refinement of the masks pre-
dicted by the network was performed. This treatment ad-
justs the areas detected as anomalies by the network to
well-defined rectangles similar to those present in the test
masks. To evaluate the results, the four models (with
different number of patches) mentioned earlier were em-
ployed. On one hand, pixel-level comparisons were made
between the real masks (ground truth) and the masks pre-
dicted by the network.

Table 1. Detection results at pixel level.

Patches per
ECG Precision Recall F1

10 0.41344 0.60901 0.49252
20 0.40789 0.71681 0.51993
50 0.44037 0.77708 0.56216

100 0.45721 0.83405 0.59064

The obtained metrics (Table 1) range from 0.413 to
0.457 for Precision, from 0.609 to 0.834 for Recall, and
from 0.492 to 0.590 for the F1 score. Pixel-level com-
parisons are too strict since the network is unable to pro-
vide pixel-perfect precision. For this reason, an analysis

1https://github.com/hgomezmoreno/IMCG_CinC2023

https://github.com/hgomezmoreno/IMCG_CinC2023


at the anomaly level was carried out. As shown in Table
2, the results at this level exhibit a high level of accuracy
in anomaly detection, ranging from 76.5%, when 1.1% of
each ECG is included in the training dataset (13 minutes),
to 92.7% when 11.1% of each ECG is included (130 min-
utes).

Table 2. Detection accuracy at anomaly level. AT per
ECG represents the average time per record in % included
in the training dataset.

Patches
per ECG

Time per
ECG (min)

AT per
ECG (%)

Detection
(%)

10 13 1.1 76.5
20 26 2.2 83.7
50 65 5.5 88.1

100 130 11.1 92.7

4. Conclusions and Future Work

This study analyzes the possibility of employing image
processing techniques and neural networks to detect car-
diac anomalies.

While the pixel-level results deviate from an optimal
outcome, when studying anomalies at a higher level, it is
observed that the proposed network successfully detects a
high percentage (between 76.5% and 92.7%) of anomalies
when trained with a short segment of the ECG to be pro-
cessed.

By leveraging the capabilities of the developed model,
medical practitioners could save time and effort in ECG
analysis while improving the overall efficiency and accu-
racy of the diagnostic process.

The main limitation of this study is the requirement to
include an annotated segment of the ECG that needs to be
processed. As shown in the results, the proposed model
still exhibits some dependency on the input data. The
short-term objective is to enhance the model to become
fully agnostic to the specific ECG being processed, thereby
eliminating the need to incorporate portions of that ECG
into the training dataset.

Another purpose is to endow the model with a more di-
verse dataset, encompassing a larger number of patients
with labeled anomalies. This, in conjunction with a multi-
class semantic segmentation model, would enable the de-
tection of multiple anomalies within a single model.

This work could potentially facilitate the implementa-
tion of a system that aids medical personnel in the auto-
matic or semi-automatic analysis of long-term ECG sig-
nals. It could also assist medical professionals by identi-
fying periods of time with a higher likelihood of detecting
anomalies, thus reducing the challenge of processing long-
duration ECGs to interpreting shorter-duration ECGs.
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