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Abstract

T-wave alternans (TWA) is a phenomenon observed in
the electrocardiogram (ECG), characterized by a consis-
tent fluctuation of the ventricular repolarization segment.
These episodes are regarded as a marker of high risk of
ventricular vulnerability and sudden cardiac death. Nu-
merous analysis strategies have been introduced to detect
TWA in the ECG. However, detection of TWA on ambula-
tory recordings remains an open issue, so this work ad-
dresses the problem using a set of machine learning (ML)
methods. Decision Trees (DT), Random Forest (RF) and K-
Nearest-Neighbors (KNN) are fed with features extracted
from three representative TWA analysis methods, namely
the Spectral Method, the Modified Moving Average and the
Time Method. Since ambulatory ECG exhibits high vari-
ability, this work investigates the impact that the analysis
window size has in the performance, so, short-term frames
of heartbeats (hb) with different sizes are considered. An
ensemble dataset of 750 instances made of real ECG sig-
nals with added TWA episodes was utilized. Longer win-
dows showed better performance in terms of FlI-score.
A non-parametric statistical test demonstrated significant
performance increase for windows of 40 hb and 30 hb
compared to 20 hb, but not for windows of 40 hb compared
to 30 hb, possibly indicating an upper limit for the window
length. All three ML models yield comparable scores and
can learn from signal excerpts of varying lengths to iden-
tify alternant waves of 35 pV.

1. Introduction

T-wave alternans (TWA) refers to a beat-to-beat dispar-
ity in the amplitude, duration, or waveform of the ST-T
complex in the electrocardiogram (ECG). Several stud-
ies have linked the presence of TWA to elevated cardiac
risk [1, 2], hence, it has been suggested as a potential
marker of sudden cardiac death risk [3,4].

A variety of methods have been proposed for TWA de-
tection and estimation [5, 6]. The Spectral Method [1], the
Complex Demodulation method [7], the Modified Moving
Average [8] are among the most common methods. Other
alternative methods have been devised, employing differ-
ent signal processing techniques, such as the Laplacian
Likelihood Ratio [5, 9]; Matched filter [10]; the Wavelet
Transform [11] and adaptive time—frequency analysis [12],
among many others. Moreover, various signal process-
ing techniques are employed to preprocess the signal be-
fore TWA detection, such as Principal Component Anal-
ysis [13], Empirical Mode Decomposition [14, 15], and
Bootstrap resampling [16]. In spite of the number of pro-
posals, the validation and confrontation of the algorithms
are troublesome due to the lack of definition of a clinical
gold standard. Due to the absence of annotated databases,
testing frameworks often resort to using synthetic signals,
usually generated combining an ECG segment with an al-
ternant wave, and noise [5,6,9, 11-13]. This approach en-
ables TWA detection due to the actual knowledge of the
alternans characteristics. ECG, alternans and noise sig-
nals may be real or simulated. More realistic strategies are
closer to being able to replicate the nonstationary nature of
the real phenomenon.

Machine learning (ML) and deep learning (DL) tech-
niques have been extensively applied to ECG problems in
recent years. Thorough reviews can be found in [17] for
DL and in [18] for ML. The authors conclude that ML
approaches help to improve data-driven decision making
in the diagnosis of heart diseases. However, they also
found that researchers mainly focus on model’s perfor-
mance rather than in interpretability and explainability.
Additionally, there have been scarce attempts to tackle the
challenge of TWA detection by means of ML and DL ap-
proaches. In [19] various ML classifiers were tested us-
ing the T-Wave alternans Database from PhysioNet web-
site. However, this particular database lacks explicit la-
bels, instead is ranked according to the level of T-wave al-



ternans present in the ECG. Consequently, the authors had
to set a threshold on this rank in order to assign classifica-
tion labels (+ TWA and - TWA). They also augmented the
database modeling synthetic cardiac cycles and alternans
based on parameters from real signals.

In this work we use a realistic database [20], appropri-
ate to test the presence of TWA alternans using ML algo-
rithms. Alternans—free ECG segments were collected from
public databases [21], using the widely accepted Spectral
Method (SM) as a gold standard. Afterward, TWA was
introduced in approximately half of the control segments,
adding a real alternant wave [22]. The use of actual ECGs
allows to better capture the physiological cardiac dynam-
ics. A set of ML methods, namely, Decision Trees (DT),
Random Forest (RF) and K-Nearest-Neighbors (KNN) are
used to address the TWA detection problem. Special atten-
tion is paid to the training, validation, and test procedures,
carefully designing a methodology that prevents overfit-
ting. Furthermore, since ambulatory ECG exhibits high
variability, this work aims to evaluate the impact that the
analysis window size has in the performance, so, short-
term frames of heartbeats (hb) with different sizes were
considered.

The remainder of this paper is organized as follows.
Section 2 briefly describes the database and the signal
model, additionally it reviews the signal processing and
ML methods used in this work for TWA detection. The
results are shown in Section 3. Finally, some conclusions
are derived in Section 4.

2. Methods

2.1. Signal model and database

The absence of annotated databases presents a signifi-
cant challenge when benchmarking TWA methods. Var-
ious approaches have been explored to acquire such sig-
nals, including the use of synthetic ECGs and the subse-
quent introduction of artificial alternans [15]. To maintain
authenticity, our prior work [20] utilized real signals from
ambulatory recordings obtained from Physionet to guaran-
tee reproducibility. Subsequent works have also adopted
this approach of introducing artificial TWAs into authentic
ECGs.

The SM serves as the gold standard for detecting po-
tential alternans in these authentic ECGs, allowing for the
removal of these segments and the compilation of a TWA-
free database. Candidate signals are extracted from three
distinct databases: the MIT-BIH Arrhythmia Database
(mitdb), the European ST-T Database (edb), and the MIT-
BIH Normal Sinus Rhythm Database (nsrdb). Conse-
quently, we obtained 575 signal segments from 30 patients,
with an uneven distribution from the three datasets.

Subsequently, these raw control signals are organized

into a patient-balanced dataset, with each patient contribut-
ing 25 frames, randomly selected. This approach is de-
signed for tracking short-duration TWA episodes, result-
ing in a total of 750 instances, which constitute the defini-
tive database. The number of heartbeats comprising each
frame is referred to as the window size. While our previ-
ous work considered this size to be optimal at 32 heartbeats
per frame, this study explores variations, including longer
and shorter windows, such as 40 and 20 heartbeats, respec-
tively, as well as a middle point of 30 heartbeats. Addition-
ally, a subsequent preprocessing step is carried out on the
signals, involving signal resampling, baseline wander re-
moval, lowpass filtering, and other necessary adjustments.
For more detailed information, please refer to [20].

Real alternant waves of 35 uV where added to roughly
half of the 25 frames obtained from each patient, specif-
ically to 13, whereas the remaining 12 frames were
alternans-free.

2.2.  Signal Processing and Machine Learn-
ing methods

While the SM is widely regarded as the gold standard
and has gained general acceptance for benchmarking al-
ternans detection, it necessitates specific conditions for its
application, such as quasi-stationary signal conditions and
the requirement for stress tests, which are incompatible
with ambulatory recordings. This is why the utilization
of ML aims to integrate some of the most well-established
methods to enhance predictions in TWA detection, rather
than relying solely on a single technique. In our prior
work, three of these methods were selected, each of which
has demonstrated its performance through various clinical
studies: TM, MMA, and the previously mentioned SM.

To accomplish this objective, a feature extraction step
is employed, during which the three obtained features are
input into the classification algorithms. For TM and MMA,
the TWA amplitude is estimated, while the SM is evaluated
using the K score, with a threshold of 3 or higher indicating
the presence of TWA in a given segment. Consequently,
each of the 750 collected instances corresponds to a set of
three features.

The ML methods comprising the classification frame-
work in this study facilitate the categorization of each in-
stance into either O (representing no TWA) or 1 (indicating
the presence of TWA).

KNN, as an instance-based learning algorithm, classifies
a test instance by identifying the K nearest neighbors from
the training dataset based on the Euclidean distance metric.
The value of the hyperparameter K, which represents the
number of neighbors considered, is determined through a
grid search procedure.

In contrast, the DT algorithm relies on a tree-like struc-



ture composed of decision rules. This algorithm optimizes
two key hyperparameters: the minimum leaf size and the
maximum number of splits. These hyperparameters sig-
nificantly influence the structure and complexity of the
decision tree and are also optimized using a grid search
scheme.

Lastly, RF is an ensemble learning method that har-
nesses the power of multiple decision trees to enhance pre-
diction accuracy and mitigate overfitting. In addition to
fine-tuning the two aforementioned hyperparameters (min-
imum leaf size and maximum number of splits) for indi-
vidual decision trees, RF also refines the number of trees
employed within the ensemble.

To assess the performance of the models, a five-fold
cross-validation (CV) step is initially implemented to fine-
tune the different hyperparameters of the models. This is
conducted while ensuring the avoidance of potential intra-
patient overfitting effects, meaning that patients in the
training set are not present in the test set. Additionally, to
evaluate the robustness of the ML algorithm, a permutation
procedure of the test set is also carried out, as comprehen-
sively detailed in [20]. In this procedure, the set is initially
divided into six groups, with the first five being analyzed
through the 5-fold CV, while the sixth group constitutes
the test set. In each permutation, the test set transitions
to one of the other groups, and the model’s performance
is reassessed. This iterative process continues until every
group has served as the test set, ultimately yielding a mean
and standard deviation score for the model’s performance.

3. Results

Table 1 shows the results for each ML method and for
each analysis window length. F1-score is presented since
it combines both precision and recall in one metric. The re-
sults are shown as the mean = the standard deviation of the
permutation procedure presented in section 2.2. All three
ML methods exhibit comparable performance. Test results
show an increasing F1-score trend as the analysis window
length increases. In order to assess if the improvement for
longer windows is statistically significant, a nonparamet-
ric hypothesis test, based on Bootstrap resampling, is con-
ducted. Let F'1,,; and F'1,,5 denote the F1-scores for two
different window lengths and let AF'1 = Fl,0 — Fly
be the difference. The hypothesis test will contrast the null
hypothesis, Hy : AF'1 = 0, that both window lengths have
the same performance, against the alternative hypothesis,
H; : AF1 # 0, that they have different performance. In
order to approximate the probability density function (pdf)
of AF1, we use Bootstrap resampling. In each resampling
iteration the 750 predictions of the test sets for both w1 and
w2 are resampled with replacement and paired to the true
labels, and F1-scores F'1% ; (b) and F'1% 5 (b) are computed.

An estimation of the confidence interval (CI) for AF'1,

Table 1. Fl-scores of ML models for three analysis win-
dow sizes. Results are shown as the mean =+ the standard
deviation.

20 hb 30 hb 40 hb
DT Train | 0.86 +o0.01 | 0.89 +o0.01 | 0.91 +o0.00
Test 0.81 +o0.05 | 0.87 +o0.05 0.89 +0.03
KNN Train | 0.87 +o0.01 | 0.89 +o0.01 | 091 +o.01
Test 0.84 +o.03 | 0.87 +o0.05 0.90 +o0.02
RE Train | 0.87 +o0.01 | 0.89 +o0.01 | 0.92 +o0.00
Test 0.82 +o0.05 | 0.87 +o0.05 0.89 +o0.02
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4of
* a0l
o . . -

-0.1 -0.05 0
AF1=Fl,, — Fly,

-0.08 -006 -0.04 -0.02 0 002 004 006 0.08
AF1=Fl,, - Fl,

Figure 1. Estimated pdfs for AF'1. The 95% CI is rep-
resented with bars. Top panel for DT, and 20 vs 30 hb
windows. Bottom panel for DT, and 40 vs 30 hb windows.

can be readily obtained from the ordered statistics F'17 ; (b)
and F'17 ,(b) obtained in each resampling. The differences
between the two methods are statistically relevant in terms
of statistic 7’1 when the 95% IC of AF'1 does not overlap
the zero value [23].

Nine hypothesis test were conducted to compare the F1-
scores, within each ML method for the three windows
lengths. Windows of 40 hb significantly outperformed 20
hb windows. Comparing closer window lengths, statisti-
cally significant improvement was found for windows of
30 hb compared to 20 hb (DT and RF), but not for windows
of 40 hb compared to 30 hb. Figure 1 shows an example of
the estimated pdfs for AF'1 represented as an histogram.
The top panel, for the comparison with DT, and 20 vs 30
hb windows, shows significant improvement (since the IC
does not contain the zero) for the 30 hb window (since the
IC lays on the right side). The bottom panel shows no sig-
nificant difference for the comparison with DT, and 40 vs
30 hb windows.

4. Conclusions

We conclude that all three ML models yield compara-
ble scores and can learn from signal excerpts of varying



lengths to identify alternant waves of 35 uV. Also longer
analysis windows showed better performance in terms of
F1-score, but the statistical analysis possibly indicates an
upper limit for the window length in terms of performance
improvement.
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