Non-invasive Total Serum Bilirubin Estimation in Pre-term Infants with Modified Mixed-Effect Random Forest

Meng Chen¹, Alain Beuchée¹, Fabrice Tudoret¹, Alfredo I. Hernández¹
¹Univ Rennes, CHU Rennes, LTSI-INSERM U-1099, F-35000 Rennes, France

Context: Hyperbilirubinemia affects 60% to 80% of newborns and can lead to irreversible neurotoxicity, especially for those born very premature. Total serum bilirubin (TSB) is measured by repetitive blood sampling. The proposal of a non-invasive TSB estimator in this context might help minimize blood exploitations. This work compares machine learning models for TSB estimation using heart rate variability (HRV) analysis.

Methods: Four-hour raw ECG signals centered on each TSB measurement were acquired. Data processing included RR series estimation and HRV feature extraction. A classical random forest (RF) regressor was used in the form of \(y = f(X)_i \), where \(y \) is the TSB to estimate and \(X \) the features comprising 18 HRV parameters and 2 age indicators. A novel modified mixed-effect random forest (mMERF) was proposed here, formulated as \(y = f(X)_i + b_1(Z_1) + b_2(Z_2) \), where \(f(X) \) is an RF, \(b_1 \) and \(b_2 \) are the linear coefficients of two random effects for patient \(i \): \(Z_1 \) (post-menstrual age) and \(Z_2 \) (post-natal age), and \(g(\cdot) \) is an exponential decay function characterizing TSB dynamics recently proposed by our team. We hypothesize that this mMERF model, explicitly introducing physiological insights, should provide better performance. Bland-Altman plots were used for comparing observed and estimated TSB.

Results: From 317 newborns, 1652 bilirubin-associated samples are derived. Compared to the baseline RF estimator, mMERF realized a higher Pearson’s correlation of 0.84 (RF: 0.53) and improved the 95% limits of agreement by 51% (training) and 34% (testing), while attenuating the undesired proportional bias (linear regression’s slope from 0.50 to 0.13 in the training data and from 0.78 to 0.28 in the testing data, see Fig.1).

Conclusion: The proposed mMERF model, incorporating personalized and knowledge-based random effects, achieved higher agreement and lower proportional bias in estimating TSB levels. Although this model requires patient-specific history for initialization, it shows clinical potential in intensive care units where longitudinal data are commonly seen.

Fig. 1: Bland-Altman plots comparing RF (upper) and mMERF (lower) models via the difference between observed \((y_i)\) and estimated \((\hat{y}_i)\) TSB levels. Left panels: training data. Right panels: testing data.