Comparative Analysis of 1-D and 2-D Deep Convolutional Neural Networks in Magnetocardiogram Classification for Coronary Artery Disease

Jia Yifan, Cui Yangyang, Zhang Yadan, Xiang Min
Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure
Hangzhou, China
Coronary artery disease (CAD) imposes a substantial burden on healthcare systems, necessitating accurate diagnosis and effective treatment. Magnetocardiography (MCG) emerges as a promising non-invasive diagnostic tool for CAD. Nevertheless, the conventional approach to CAD diagnosis via one-dimensional (1-D) MCG is subjective and susceptible to inaccuracies. In response, a novel image-based MCG classification method has been introduced, leveraging a two-

Overview of the proposed structure for $1 \mathrm{D}-\mathrm{CNNs}$ and $2 \mathrm{D}-\mathrm{CNNs}$ dimensional convolutional neural network (2-D-CNN) to distinguish MCG signals indicative of healthy cardiovascular function from those associated with CAD pathology. To further enhance the accuracy and robustness of CAD classification via MCG, we compared the classification performance of AlexNet, ResNet, and VGGNet networks using 1-D MCG and 2-D MCG images as inputs, respectively. Subsequently, to mitigate overfitting in 2-D networks, we

Results of different types of deep learning models

Model	AlexNet		VGGNet		ResNet	
Metrics	F1	AUC	F1	AUC	F1	AUC
Tanh-1D	0.802	0.895	0.812	0.900	0.804	0.896
ELU-1D	0.794	0.891	0.794	0.891	0.749	0.871
Swish-1D	0.827	0.895	0.804	0.901	0.852	0.917
SeLU-1D	0.756	0.832	0.868	0.914	0.859	0.930
ReLU-1D	0.787	0.853	0.766	0.858	0.811	0.873
Random-2D	0.843	0.908	0.854	0.928	0.843	0.941
ImageNet-2D	0.868	0.940	0.845	0.946	0.894	$\mathbf{0 . 9 5 2}$

