Characterizing Surface Fibrillatory Waves Through the Lagged Poincaré Plot for Preoperative Prediction of Ablation Success in Persistent Atrial Fibrillation

Pilar Escribano, Juan Ródenas, Manuel García, Flavia Ravelli, Michela Masè, José J Rieta, Raúl Alcaraz

Research Group in Electronic, Biomedical and Telecommunication Engineering, University of Castilla-La Mancha, Cuenca, Spain

Background and Aim. Atrial fibrillation (AF) management poses a significant challenge for healthcare systems due to the high mid-term recurrence rate following catheter ablation (CA) for persistent AF. Analyzing the morphological variability of fibrillatory waves (f-waves) from the electrocardiogram (ECG) has provided insights about the atrial electrical activity organization, which is a crucial indicator for CA outcome prediction. This work introduces an innovative analysis of f-waves morphology evolution over time based on the lagged Poincaré plot (PP) technique.

Methods. The surface ECG was preoperatively recorded before CA procedure for 52 persistent AF patients. Subsequently, 94 f-waves excerpts were extracted from the lead V1, obtaining 34 from patient that relapsed to AF and 60 for those who maintained SR after a follow-up period of 9 months. Traditional ellipse–fitting quantifiers and centroid–derived PP features were computed from the lagged PP representation of the f-waves for different lags ranging from 0 to 400 ms.

Results. The PP-derived features outperformed common CA outcome predictors, such as the dominant frequency (f_0) or the normalized amplitude of the *f*-waves $(n\mathcal{A}_{avg})$, and were comparable to the recently proposed power rate index (φ). Specifically, the minor (*SD*1) and major (*SD*2) axes of the optimally fitted imaginary ellipse, their ratio (*SD*12) and the standard deviation of the distance between PP points and the distribution centroid (S_d) showed a predictive accuracy (Acc) over 70%. Moreover, the combination of *SD*12, S_d , φ and $n\mathcal{A}_{avg}$ improved Acc and AUC up to 85% and 91.5%, respectively.

Conclusions. The Lagged PP has proven to be a valuable tool in characterizing f-waves, paving the way for a more personalized approach in AF treatment by preoperatively anticipating mid-term success of CA.

Index	SR group	AF group	p-value	m_{opt} (ms)	Acc(%)	AUC(%)
SD1	0.172 ± 0.031	0.207 ± 0.023	< 0.001	229	72.30	81.35
SD2	0.183 ± 0.026	0.222 ± 0.022	< 0.001	152	79.10	86.19
SD12	1.59 ± 0.21	2.07 ± 0.31	< 0.001	80	77.06	89.18
S_d	0.117 ± 0.009	0.126 ± 0.009	< 0.001	82	69.33	75.18
f_0 (Hz)	5.87 ± 1.21	6.29 ± 0.765	0.0140	_	60.45	62.75
φ	0.398 ± 0.243	0.164 ± 0.062	< 0.001	—	77.23	85.04
$n \mathcal{A}_{avg}$	0.237 ± 0.138	0.167 ± 0.080	0.0025	-	64.66	67.79