Can the Low-Frequency Component of the Maximal First Derivative of Arterial Pressure Waveform Indicate the Sympathetic Response to Isometric Exercise?

Alejandra Guillén-Mandujano, Salvador Carrasco-Sosa Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México

We propose using the low-frequency component (LF) of the maximal first derivative of arterial pressure waveform (dAP/dt_{max}) as a potential estimator of sympathetic activity (LF_{dAP/dtmax}). This could expand the estimating capability of dAP/dt_{max}, used as a noninvasive index of left ventricular systolic function and a predictor of mortality in heart failure.

We assessed the effects of continuously increasing muscular force (CIMF) on the time courses of systolic pressure (SP), dAP/dt_{max} , $LF_{dAP/dtmax}$, and LF of SP (LF_{SP}). 34 healthy volunteers isometrically extended their right leg from 0 to 100% of their maximal force (%MF) at a rate of 0.2 kg·s⁻¹. The spectral indexes were computed using the smoothed pseudo-Wigner-Ville time-frequency distribution. Coherence and correlations between spectral indexes were obtained. The threshold phenomenon was detected by the V-slope method.

The indexes' response to CIMF showed patterned dynamics, relative to their baseline. SP increased progressively from the onset to 64.7 ± 8.8 %MF, after which it increased more rapidly. The dAP/dt_{max} increased gradually from the beginning to 53.5 ± 11.2 %MF, reached a plateau for 21 ± 6 s, and then rose progressively until the end. LF_{dAP/dtmax} and LF_{SP} responses exhibited two phases: initially, they decreased until 65.3 ± 11.3 % MF for LF_{sP} and 64.7 ± 13.1 % MF for LF_{dAP/dtmax}, followed by an abrupt increase that continued until the end of CIMF. This behavior is considered a threshold phenomenon. The inflection %MF of LF_{SP}, LF_{dAP/dtmax}, and SP were similar. The table shows the mean correlations and coherence between indexes in the post-threshold phase.

We found strong correlation and high coherence between our new indicator $LF_{dAP/dtmax}$ and the well-known LF_{SP} sympathetic index. This supports the proper performance of $LF_{dAP/dtmax}$ as a promising cardiac sympathetic activity measure. Furthermore, tracking the time courses of $LF_{dAP/dtmax}$ and LF_{SP} during CIMF enabled us to show a sudden increase in sympathetic outflow, possibly associated with the metaboreflex activation threshold.

Table. Means \pm SD of correlations and coherence of the relations between indexes.

	SP-dAP/dt _{max}	LF _{SP} -LF _{dAP/dtmax}
Correlation	$0.54{\pm}0.35$	0.91±0.13
Coherence		$0.84{\pm}0.09$