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Abstract

Following recent advances in wearable devices and Al
classifier models, a system using the CatBoost classifier
model to analyze data provided by Smartwatches and cel-
lular devices through remote monitoring system was pro-
posed, in order to improve the accuracy of making the de-
cision in such systems. The input data for each participant
were consisted of the patient’s medical history along with
the patient’s vital signals, and statistical features extracted
from the signal time series. Vital signals were collected
mainly using smartwatches. The model performed binary
classification (N=49) across a dataset split into 3 folds,
using cross-validation. The Optuna algorithm was used to
optimize the model. It scored (91.88 £ 7.40)% balanced
accuracy, (83.81 + 3.30)% Fl-score and with (95.18 *
6.27)% ROC-AUC. Overall, the system showed promising
results towards classifying high/low risk patients, given the
low number of samples and high evaluation scores. Pos-
sible improvements in the project include a higher number
of samples and model calibration to enhance the reliability
of risk scores.

1. Introduction

Recent advances in wearable technology and artificial
intelligence (AI) have significantly transformed the land-
scape of modern healthcare. Wearable devices, such as
smartwatches, enable continuous and accurate monitoring
of a wide range of physiological parameters, including
heart rate (HR) , oxygen saturation (SpO2), systolic and
diastolic blood pressure (SBP, DBP)[1]. Simultaneously,
Al algorithms have demonstrated remarkable capabilities
in analyzing large volumes of biomedical data, including
in the area of cardiology [2—4].

In this same context, current remote monitoring systems
present limited applicability and efficiency, especially re-
garding cardiac postoperative patients [5]. This indicates

that current systems fail to fully monitor the patients’ med-
ical status, which may lead to post-surgical complications,
given that these patients are more susceptible to complica-
tions such as atrial fibrillation [6].

With this in mind, the main objective of this study is to
improve telemonitoring systems, proposing a solution us-
ing a CatBoost classifier model to analyze data provided
by Smartwatches through remote monitoring system and
predict if the cardiac post-operated patient is at possible
risk and in need to be readmitted for health checkups. This
will not only explore wearable devices’ applicability re-
garding telemonitoring systems, but also aim to improve
the quality and efficiency of post-operative patient care by
detecting and aiding patients with complications.

2. Methods

2.1. Input Data

The input data for each sample consists in three parts:
the patients’ medical history, vital measurements and time-
series signals. In total, data for 55 patients was collected.
But, due to inconsistencies in time series signals, 6 patients
were removed from the study group, resulting in a total of
49 patients. All medical histories and vital measurements
were taken at InCor, HCFMUSP, Sao Paulo by the medical
staff.

2.1.1. Medical History

The medical history contains 4 numerical columns: age,
height, weight and BMI; 18 yes/no questions indicating
if the patient has had: altered heart rate, cardiac insuffi-
ciency and its symptoms, thoracic pain, infarction, arterial
insufficiency, cerebral vascular diseases, dementia, chronic
lung diseases, connective tissue illnesses, peptic ulcers,
liver diseases, diabetes with and without injuries to tar-
get organs, hemiplegia, kidney dysfunction, hypertension



and dyslipidemia; and 4 categorical columns: sex, ethnic-
ity, type of dyslipidemia and surgery (coronary, valve or
aorta).

2.1.2. Vital Measurements

Vital measurements were taken before and after the
monitoring period of 30 days using both standard devices
and SAMSUNG™ Galaxy WatchS5 Smartwatches. The
following vital signals were collected: HR, SBP, DBP and
SpO2, which amounts to 16 columns of numerical data.

2.1.3. Time Series

The time series contains data for 5 vital signals: SBP,
DBP, SpO2, HR by Photoplesthysmogram green sen-
sor, namely HR_PPG, and HR by ECG sensor, namely
HR_ECG. These measurements were taken by the patient
exclusively using smartwatches during the period of 30
days of monitoring post cardiac surgery soon after full re-
covery. All data collected during the remote monitoring
period were obtained using the Web FAPO-SI® platform
[1] (an internal customized tool), which extracted signals
from Samsung Health® and Health Monitor® applications
and loaded these signals to the database twice a day using
a Json extractor.

In total, 17 features were extracted from each these mea-
surements: statistical features: mean, std, max, min, me-
dian, ql, g3, skew, kurtosis, rolling mean mean, rolling
mean std, rolling std mean, rolling std std; and Fourier
transform features: fft mean, fft std, fft max, fft min. The
extraction of these features resulted in 85 column of nu-
merical data.

Figure 1 represents more clearly the process of data
collection. More information regarding data collection
present in [1].
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Figure 1. Block diagram representing the process of data
collection, with each of the three part that forms the input
database.

2.1.4. Patient Labels

Patient labels were extracted as hospital readmissions
occurred. Along with readmission labels, additional in-
formation was collected, such as readmission date, days
passed until readmission, cause of readmission and addi-
tional observations from the doctor, as well as the Manch-

ester classification score, which indicates the patient’s ur-
gency.

2.2.  Preprocessing

Limited preprocessing was performed on the patient’s
medical history, with a few columns removed in consul-
tation with the medical team, leaving the medical history
with 20 columns.

The vital signals measurements had some inconsisten-
cies in its values, mainly missing and NaN values. To min-
imize the impact of these values in the classification, they
were filled with the value zero. It is also important to note
that the measurements were not normalized, but instead
kept their original value.

The time series required more thorough preprocessing.
To ensure temporal consistency, time series values were
chronologically corrected. The missing and NaN val-
ues were filled with a random value from the interval,
as to maintain data integrity. The sequences had varying
lengths; to standardize them, the mean length was com-
puted and all sequences were padded to match this average
length. Padding followed the same approach as used for
handling NaNs. Specifically in the HR time series, there
were a large quantity of zero values, and they were also
filled with random values from the interval.

After each component of the input data was prepro-
cessed, they were concatenated and fed to the CatBoost
model. Figure 2 demonstrates more clearly how the input

data was obtained.

ical Features (85) ]

[ Medical History + Vital (36) ] [

Input (121)
| CatBoost }—[ Predictions J

Figure 2. Block diagram for preprocessing and classifica-
tion, consisted of all part that form the input database.

2.3. Training and Classification

Given the importance of categorical data present in
the medical history to the classification, a model that fo-
cused on the encoding of these variables was required.
CatBoost’s ordered target encoding enabled a more de-
tailed and complete representation of categorical data. The
model was optimized using the Optuna algorithm, and the
final model was the result of a study which maximized the
Fl-score throughout 10000 trials. The model performed
binary classification, assigning each sample to one of two
classes: readmitted (N=9) or not readmitted (N=40).



Cross-validation was implemented in the experiment to
maximize sample usage (N=49). 3-fold stratified cross-
validation was chosen for the experiment, in order to main-
tain, in each fold, the proportions between the two classes.
For each fold, the model was trained and tested, and the
evaluation metrics were calculated. Figure 3 shows the
block diagram of the experiment.
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Figure 3. Block diagram of the experiment, representing
training, testing and evaluation metrics’ extraction.
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2.4. Evaluation Metrics

The evaluation metrics were calculated in each fold us-
ing reference and predicted labels. For the final scores, the
mean was extracted among all folds, along with the stan-
dard deviation they presented. The following metrics were
calculated: accuracy, recall, precision, F1, balanced accu-
racy and ROC-AUC. Considering the highly unbalanced
aspect of the patient labels, maximization of F1 and bal-
anced accuracy was prioritized.

3. Results and Discussion

Overall, the model achieved high evaluation scores, as
Table 1 shows. Elevated F1 and balanced accuracy scores
indicate the model was able to correctly classify most of
the samples, despite the highly unbalanced classes. The
high ROC-AUC demonstrates the model’s effectiveness
in distinguishing between the different classes. Figure 4
demonstrates True Positive Rate (TPR) and False Positive
Rate (FPR) across different classification thresholds, com-
paring the final model to a random classifier, represented
by the red line.
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Figure 4. Model’s ROC curve, comparing the final model
to a random classifier.

In total, there were 2 false positives and 1 false neg-
ative, represented in Figure 5. Although information re-
garding Manchester classification was missing for the false
negative sample, the patient showed symptoms of convul-
sions, which may indicate the model missed some abnor-
malities in the sample’s medical data. Also, the presence
of 2 false positives indicate the model may have misinter-
preted healthy vital signals, which caused it to misclassify
healthy patients.
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Figure 5. Classification model’s final confusion matrix,
with 2 false positives and 1 false negative.

When feeding different combinations of the input
database to the model, the medical history proved to be
the most important feature in sample classification, as its
absence in the input dataset resulted in the largest drop ob-
served in evaluation metrics: 50% reduction in F1 score
and 28% reduction in balanced accuracy. This is to be ex-
pected, given the large clinical and medical value that the
medical history carries. The role of smartwatch measure-
ments in comparison to standard devices’ measurements
was also analyzed. Models trained using vital measure-
ments exclusively from standard devices and smartwatches
produced nearly identical results, with less than 1% differ-
ence in F1 and balanced accuracy scores. This shows that
measurements taken from smartwatches help the model
classify high/low risk patients as effectively as measure-
ments taken from standard devices.

Another relevant aspect is the impact of time-series sig-
nals on patient classification. Two models were compared
in order to visualize how these signals affected the final
result: the first underwent training using only medical his-
tory + vital measurements, and the second was trained us-
ing the entire database. Improvements were observed in
all evaluation metrics, and the standard deviation between
folds was reduced, as shows Table 2. Figure 6 shows
how the different models compare and highlights the ROC-
AUC score of 95.18% achieved by the final model. This



Table 1. Evaluation metrics by fold and final scores, with standard deviation as SD.

Fold Accuracy F1 Score ROC AUC Balanced Accuracy Recall Precision
Fold 1 94.12% 80.00% 88.10% 83.33% 66.67% 100.00%
Fold 2 93.75% 85.71% 97.44% 96.15% 100.00% 75.00%
Fold 3 93.75% 85.71% 100.00% 96.15% 100.00% 75.00%

Mean+SD 93.87+0.21% 83.81 £3.30%

95.18 +6.27%

91.88 + 7.40% 88.89 +19.25% 83.33 + 14.43%

indicates that the features extracted from time-series sig-
nals positively affected patient classification, which is very
promising for the development of remote monitoring using
smartwatches.
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Figure 6. Evaluation metrics’ comparative between a
model with and without features extracted from time-
series.

4. Conclusions

The low number of samples may limit the model’s ap-
plicability, but overall the model showed promising results
towards classifying high/low risk patients. High evalua-
tion metrics, such as (91.88 £ 7.40)% balanced accuracy,
(83.81 £3.30)% F1-score and (95.18 £ 6.27)% ROC-AUC
indicate that the model not only correctly classified the pa-
tients’ need for hospital readmission, but also that it was
able to efficiently distinguish patients between the two la-
bel classes.

Possible improvements in the project include the use of
a larger database and model calibration to enhance the re-
liability of risk scores. The inclusion of more patients to
the study is in progress and it is expected to provide a more
applicable and accurate model. With appropriate improve-
ments in the proposed model, the resulted applications will
not only increase the quality care of the patient, but also

reduce the mortality rate coming from postoperative com-
plications.
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Table 2. Evaluation metrics by input, comparing the exclusion and inclusion of time series signals.

Input Accuracy F1 Score ROC AUC Balanced Accuracy Recall Precision

History + Vital 87.27+6.58% 69.57+18.33% 84.50 +11.48% 79.84 £ 14.57% 66.67 £28.87%  71.11 £7.70%
History + Vital + Time Series  93.87 £0.21%  83.81 £3.30%  95.18 £6.27% 91.88 + 7.40% 88.89 £19.25% 83.33 £ 14.43%




