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Abstract

To understand how the heart responds to physiological
demands, heart rate variability (HRV) has been explored
extensively in previous literature. However, less attention
has been given to how beat-to-beat directional changes
in HR, deceleration, acceleration, or no change, evolve
across the lifespan. In this study, we applied a Markov
transition matrix approach to electrocardiogram (ECG)
data from 56 healthy participants to examine age-related
differences in symbolic HR transitions. The participants
were divided into two age groups: young (18–19 years old,
n = 40) and advanced age (75–92 years old, n= 16). The
transition matrix was constructed based on three states:
HR deceleration (state -1), no change in HR (state 0), and
HR acceleration (state 1). The results of this analysis show
significant differences between the young and advanced
age groups in terms of transitioning from state -1 to the
other states. Additionally, the probability of transitioning
to state 0 from another state is higher in the advanced age
group compared to the young group. Both findings suggest
a reduction in parasympathetic activity and HRV.

1. Introduction

Heart rate variability (HRV) has been used as a gen-
eral indicator of autonomic nervous system (ANS) activ-
ity. HRV refers to the beat-to-beat variations in heart rate,
also known as RR intervals (RRIs), and is believed to be
modulated by both the parasympathetic and sympathetic
branches of the ANS [1,2]. HRV serves as a rough marker
of cardiac health and fitness and has been extensively used
for ANS related inferences [3–5]. Previous studies have
demonstrated that both the time and frequency domains of
HRV decline with age, suggesting a reduction in parasym-
pathetic activity and an increase in sympathetic activity
[2, 5]. Specifically, the standard deviation of normal-to-
normal RR intervals (SDNN) and the high-frequency (HF)
band of HRV, both indicators of parasympathetic activity,
have been shown to decrease with age [5].

Conventional HRV measures typically ignore the di-
rectionality of RR interval (RRI) fluctuations, that is,
whether the heart rate (HR) is decelerating or accelerat-
ing. The analysis of this directional behavior is known as
heart rate asymmetry (HRA), originally characterized us-
ing Poincaré plots [6]. HRA quantifies the relative con-
tribution of HR accelerations and decelerations to over-
all HRV [7, 8], and has also been examined through the
study of monotonic runs of accelerations and decelera-
tions [8, 9]. Beyond traditional HRV and HRA, symbolic
HRV [10, 11] provides an additional framework for cap-
turing directionality by transforming RRIs into discrete
symbolic sequences, allowing for the analysis of tempo-
ral patterns and state transitions. Together, HRA and sym-
bolic HRV can offer deeper insights into how the sinoatrial
node responds differently to accelerations versus decelera-
tions, responses that are influenced by multiple physiolog-
ical factors, including autonomic nervous system activity,
electrolyte balance, and hormonal regulation [6].

So far, the mechanisms associated with HRV direc-
tionality are not well understood, and further research is
needed to explore the prognostic value of studying HRV
directionality and its changes with physiological aging.
Here, we employ the Markov transition matrix [12] to in-
vestigate the transition patterns between accelerations and
decelerations in healthy participants. From the transition
matrix, transition probabilities were calculated to examine
how these patterns change with age.

2. Methods

2.1. Data description

In this study, electrocardiogram (ECG) signals from the
online publicly available “Autonomic Aging: A dataset
to quantify changes of cardiovascular autonomic func-
tion during healthy aging” Physionet database were used
[13–15]. Information related to participants’ recruitment
and data collection is explained in detail in [15]. Simulta-
neous records of ECG and continuous blood pressure were
collected from 1,121 healthy subjects with a sampling rate



of 1000 Hz, age: 18-92 years old. Informed written con-
sent was collected from all subjects, and all research was
performed in accordance with relevant guidelines and reg-
ulations. The length of the recordings ranged from 8 to 35
minutes.

In PhysioNet, the exact age associated with each record
is not reported; instead, participant data are grouped into
15 age-based categories. In this study, we considered
Group 1 (18 – 19 years), Group 13 (75 – 79 years), Group
14 (80 – 84 years), and Group 15 (85 – 92 years). The rea-
son for selecting multiple groups from the advanced aging
category was to balance the number of samples between
the young and aged groups. The number of available ECG
records per group was as follows: Group 1: n = 46, Group
13: n = 7, Group 14: n = 12, and Group 15: n = 7.

2.2. ECG R peak detection

Here, we considered 5-minutes of ECG records per par-
ticipant. Only ECG signals with clear R peaks were con-
sidered. ECG records with noise or hard-to-detect R peaks
were not considered. Further, ECG signals with a lot of ec-
topic beats were excluded. After exclusion, the number of
samples per group was: Group 1: n = 40 (male: 8, female:
39, unknown gender: 1), Group 13: n = 5 (all female),
Group 14: n = 5 (all female), and Group 15: n = 6 (all fe-
male). R peaks were detected in MATLAB 2023b by using
a code based on the “findpeaks” function.

2.3. Markov Transition matrix and proba-
bility calculation

To construct the Markov transition matrix, we identified
three states based on consecutive RRI beats as follows (the
subscript x indicates the beat count):
• State -1: HR deceleration (RRx+1 −RRx > 0).
• State 0: no change in RRI (RRx+1 −RRx = 0).
• State 1: HR acceleration (RRx+1 −RRx < 0).

A 3 x 3 transition matrix, which contains the transition
probability (TP), was constructed. In the transition matrix,
TP (i → j) denotes the probability of transitioning from
state i to state j. Table 1 shows an illustration of the tran-
sition matrix that was used in this study per participant. In
the table, TP (−1 → −1) indicates a monotonic deceler-
ation run or the probability of transitioning from state -1
(HR deceleration) to state -1 (HR deceleration). The sum
of the probabilities in each row is 1.

2.4. Statistical analysis

We created two age-based groups: Group 1 (young, 18
– 19 years old, n = 40) and Group 2 (advanced age, 75 –
92 years old, n = 16). We compared the mean values using
the Wilcoxon rank-sum test in MATLAB.

3. Results

3.1. Transition from state -1 (HR decelera-
tion)

A comparison between the transition matrix of young
and advanced age groups revealed that all transitions from
state -1 were significant, TP (-1 → -1) (p < 0.05), TP (0 →
-1) (p < 0.05), and TP (-1 → 1) (p < 0.05). In transition
from -1, the tendency to continue on declaration runs are
higher in the young group (TP = 0.051 ± 0.09) compared
to the advanced age group (TP = 0.42 ± 0.11). Opposite
trends are observed in transitioning from -1 to either 0 or
1 where the TP values were higher in the advanced age
group (TP (-1 → 0) = 0.03 ± 0.03, TP (-1 → 1) = 0.54 ±
0.12) compared to the young group (TP (-1 → 0) = 0.012
± 0.01, TP (-1 → 1) = 0.48 ± 0.09) .

3.2. Transition from state 0 (no change)

There are no significant differences when transitioning
from state 0 to state -1 or 1. However, the TP (0 → 0)
is slightly higher in the advanced age group. The table
further reveals that there is less tendency to transition to
state 0 from any other state where all probabilities were
almost zero in both groups.

3.3. Transition from state 1 (HR accelera-
tion)

There are no significant differences when transitioning
from state 1 to state -1, or 1. However, the TP (0 → 0) is
significantly higher in the advanced age group (p < 0.05).

4. Discussion

In this study, we explored the transition patterns in HR
decelerations and accelerations using a Markov Transition
matrix. Our main finding is that the tendency to transition
from an HR deceleration state to any other state changes
with aging (Table 2). The findings in Table 2 suggest
that monotonic deceleration runs (TP (-1 → -1)) are more
common in the young group compared to the advanced
age group. A likely interpretation of this phenomenon is
reduced parasympathetic nervous system activity and in-
creased sympathetic nervous system activity in the aging
group, as discussed in previous literature [5, 16]. The in-
crease in the sympathetic nervous system activity is further
supported by the greater tendency to switch from HR de-
celeration to HR acceleration in the advanced aging group
compared to the young group. Nevertheless, we cannot
attribute the observed changes in transition trends exclu-
sively to ANS activity, as other factors, such as respiration



Table 1. Demonstration of the Transition Matrix for Heart Rate Acceleration and Deceleration
State -1 0 1

-1
TP (-1 → -1)

Monotonic HR
deceleration run

TP (-1 → 0)
No change in HR value
from a deceleration state

TP (-1 → 1)
Transition to HR acceleration

from deceleration

0
TP (0 → -1)

Transition from no change
to HR deceleration

TP (0 → 0)
No change in HR value

TP (0 → 1)
Transition from no change

to HR acceleration

1
TP (1 → -1)

Transition to HR deceleration
from acceleration

TP (1 → 0)
No change in HR value

from an acceleration state

TP (1 → 1)
Monotonic HR
acceleration run

-1: heart rate (HR) declaration, 0: no change, 1: HR acceleration

Table 2. Comparison between the young and advanced age groups in terms of the transition probabilities
Transition Probability Young age Advanced Age p - value

Transition from state -1 (HR deceleration)
TP (-1 → -1) 0.51 ± 0.09 0.42 ± 0.11 0.009
TP (-1 → 0) 0.012 ± 0.01 0.03 ± 0.03 0.001
TP (-1 → 1) 0.48 ± 0.09 0.54 ± 0.12 0.047

Transition from state 0 (no change)
TP (0 → -1) 0.49 ± 0.34 0.46 ± 0.24 0.56
TP (0 → 0) 0.01 ± 0.08 0.02 ± 0.035 0.01
TP (0 → 1) 0.49 ± 0.34 0.46 ± 0.24 0.56

Transition from state 1 (HR acceleration)
TP (1 → -1) 0.47 ± 0.11 0.52 ± 0.11 0.47
TP (1 → 0) 0.01 ± 0.01 0.034 ± 0.025 p <0.001
TP (1 → 1) 0.51 ± 0.10 0.45 ± 0.11 0.11
The values in the table indicate mean ± Standard deviation

(inspiration and expiration) and hormonal influences, are
also believed to play a role in HRV [8].

Another notable finding is that the tendency to switch
to the no change state, although very low (0.01 < TP <
0.35), is higher in the advanced age group. This could be
attributed to the decline in HRV [2, 16]. Our findings re-
lated to transitions from state 1 to state -1 or 1 were not
significant (p < 0.05). This may indicate that the mecha-
nisms controlling HR accelerations are not affected by age,
but more research is needed to understand this.

For further validation of the results, the study should be
repeated with a larger sample size. Here, we were lim-
ited by the small sample size in the advanced age group.
Furthermore, the study would be more comprehensive if
we could compare the transition matrix between genders;
however, our sample consisted mainly of females. In addi-
tion, correlation analysis between HRV and TP could pro-
vide deeper insights, but due to space limitations, we could
not include such analysis in this manuscript.

Finally, it is worth noting that symbolic HRV analy-
sis, as used in this study, offers a framework that can be
integrated with automated techniques, such as machine
learning and advanced pattern recognition, to enhance the

detection and classification of disease states from ECG
recordings as was discussed previously [17].

5. Conclusion

This study demonstrates that age influences the transi-
tion dynamics of HR decelerations and accelerations, as
quantified by a Markov transition matrix. Younger individ-
uals exhibited more frequent monotonic deceleration runs,
suggesting shifts in autonomic balance with aging. Al-
though these patterns are likely linked to reduced parasym-
pathetic and increased sympathetic activity, other physio-
logical factors may also contribute.
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