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Abstract

We present our deep learning solution for the 2025
George B. Moody PhysioNet Challenge, which utilizes
a teacher-student model architecture. A key component
of our approach is a generalized multi-objective teacher
model based on the U-Net architecture, which was pre-
trained on publicly available 12-lead ECG databases
(containing over 1 million ECG recordings) for both the
segmentation task and the classification task of 28 cardiac
pathologies. The student models were specifically trained
to distill knowledge from the teacher’s classification out-
puts, as well as to predict Chagas disease based on pub-
lic challenge datasets containing Chagas disease labels.
To improve the reliability of our predictions, we employed
an ensemble of five student models, averaging their out-
puts during the inference stage. Our model achieved XYth
place in the challenge, with a challenge score of 0.458 on
the hidden validation set.

1. Introduction

Chagas disease (CD), caused by the protozoan Try-
panosoma cruzi, is a tropical disease, affecting an esti-
mated 6 to 7 million people worldwide, primarily in Latin
America. After the acute phase, about 20–30% of in-
fected individuals develop chronic Chagas cardiomyopa-
thy, the most severe and life-threatening form of the dis-
ease [1–3]. Chronic Chagas cardiomyopathy involves pro-
gressive myocardial damage leading to conduction abnor-
malities and arrhythmias, which manifest on the ECG as
bundle branch blocks, fascicular blocks, or ventricular ec-
topy [4]. Traditionally, Chagas disease is diagnosed by
serological testing for antibodies against the parasite us-
ing techniques such as enzyme-linked immunosorbent as-
say (ELISA) or immunofluorescent antibody test (IFAT).
However, these methods can be time-consuming, require
specialized equipment, and are often expensive. Therefore,
there is a need for prescreening methods allowing the rapid
and inexpensive identification of individuals who are likely
to be infected, enabling resources to be focused on those

who need more definitive diagnostic testing. This is partic-
ularly important in resource-limited settings where tradi-
tional serological tests may not be readily available. Elec-
trocardiography (ECG) is used as a preliminary screening
tool to identify individuals who may have cardiac involve-
ment due to chronic Chagas disease [4]. Abnormal ECG
results help identify patients who should undergo more
specific and costly serological testing to confirm infection
and determine appropriate therapy.

2. Methods

For this challenge, we proposed a deep learning pipeline
based on a teacher–student model architecture. The
teacher model was pretrained to perform ECG segmenta-
tion and classify 28 cardiac pathologies based on the 2021
Physionet Challenge datasets [5] and other publicly avail-
able datasets (Table 1). The architecture was adapted from
our winning solution in the 2021 Physionet Challenge and
rebuilt into U-net architecture, allowing for ECG segmen-
tation [6, 7]. Student models were designed based on our
2021 ResNet architecture, accompanied by multi-head out-
puts, allowing students to learn from the teacher’s outputs
in a multi-objective manner and estimate the probability of
Chagas disease. To improve prediction stability and over-
all performance, we trained an ensemble of five student
models, whose outputs were averaged during inference.

In the preprocessing stage, we followed our Challenge
2021 pipeline [6]. First, resample the data to a fixed fre-
quency of 500 Hz. We apply a bandpass filter (1–47 Hz) to
suppress frequency components unrelated to cardiac activ-
ity, such as baseline wandering and powerline interference
at 50 Hz or 60 Hz. This is especially relevant since datasets
SAMITROP and CODE-15 originated from Brazil (60 Hz
powerline), while PTB-XL originates from Germany (50
Hz powerline), where the incidence of CD is negligible.

Some teams in the challenge’s unofficial phase achieved
unusually high scores, nearing a perfect 1.0. This sug-
gested possible data bias, as the results significantly out-
performed typical state-of-the-art methods [8]. This find-
ing highlighted the need to focus on building more robust
models that aren’t overly reliant on these dataset-specific



biases.
To augment the training data and increase model ro-

bustness, we introduced several types of controlled noise
during preprocessing. Gaussian noise was added with am-
plitude scaled relative to each channel’s signal magnitude,
simulating natural variability in ECG recordings. Artifi-
cial pauses—segments of zeroed signal across all chan-
nels—were used to mimic transient signal dropouts, such
as those caused by electrode detachment or motion arti-
facts. In addition, we occasionally inserted impulse noise
to simulate abrupt high-amplitude disturbances. The sig-
nal is then z-score normalized by subtracting the mean and
dividing by the standard deviation per channel. Any NaN
values are replaced with zeros to maintain numerical sta-
bility. To ensure consistent input size, we crop or zero-pad
all recordings to a fixed length of 8,192 samples (approxi-
mately 16 seconds) to accommodate the standard duration
of 10-second strips.

2.1. Multi-objective teacher model training

The multiobjective teacher model for generalized ECG
classification and segmentation was developed using pub-
licly available ECG datasets. The model is designed as
U-net architecture with classification and regression multi-
head outputs from the bottleneck layer. The classifica-
tion output consists of 28 classes from PhysionetChallenge
2021, and the regression output involves SNR estimation,
achieved by adding variable noise to the input data as an
augmentation technique. The architectural design is de-
picted in Figure 1.

The teacher loss function is defined as:

Ltotal = Lcls + λsegLseg + λsnrLsnr (1)

, where Lcls is a binary cross-entropy loss for a classifica-
tion task, Lseg is a cross-entropy loss for ECG segmenta-
tion (P, PQ, QRS, ST, T, TP) intervals, and Lsnr is a mean-
square error regression for SNR estimation. Lambda is a
task-specific coefficient to balance the contributions for in-
dividual tasks.

2.2. Student model training

The five models forming the ensemble were trained us-
ing 5-fold cross-validation with a shared pretrained teacher
model and pretrained Chagas disease model backbone lo-
cally trained for 12 epochs. The server-side training was
continued for 1 epoch, where the dataset was split into five
folds; in each iteration, four folds were used for training
and one for validation. This procedure yielded five inde-
pendently trained student models, each trained on a differ-
ent subset. During inference, all five models were applied
to the test set, and their outputs were averaged to produce

the final predicted probability of Chagas disease for each
patient.

The student loss is defined as:

Lstudent = Lchagas(t, pchagas) +Lcls(pteacher, pstudent)
(2)

, where Lchagas is cross-entropy loss for Chagas dis-
ease classification task, and Lcls(pteacher, pstudent) is
binary-cross-entropy loss for 28 pathologies classes, where
pteacher and pstudent represent probabilities per given
class.
Table 1. Publicly available datasets used for generalized
teacher model training

Dataset Number of Records
CPSC 2018 [9] 6 877
MIMIC-4-ECG [10] 800 000
Chapman Shaoxing and Ningbo [11] 45 152
Georgia ECG database [12] 10 300
HEFEI 40 000
CODE-15 [13] 345 779
SAMITROP [14] 1 631
PTB-XL [15] 21 837
Shandong Provincial Hospital [16] 25 770
Segmentation task
LUDB [17] 200
PTB-XL (v1.0.1) Soft-Seg [18] -

3. Results

The Challenge score is calculated by first identifying the
subset of records with the highest predicted probabilities
for Chagas disease, where the size of this subset is set by
the coefficient α = 0.05, meaning the top 5% of records
with the highest predicted probability for Chagas are se-
lected for evaluation. The true positive rate is then calcu-
lated exclusively on this α-subset.

This specialized evaluation method addresses the chal-
lenges associated with the limited availability of serolog-
ical testing for Chagas disease. By focusing on a small,
high-confidence subset of predictions, the Challenge score
provides a more relevant measure of the model’s perfor-
mance in scenarios where diagnostic resources are scarce.
This approach mirrors real-world applications where only
a fraction of the population can be tested, prioritizing the
model’s ability to accurately identify the most probable
cases.
4. Discussion

Our strategy was initially inspired by the clinical diag-
nostic process, specifically focusing on the detection of
common ECG abnormalities typically observed in cardio-
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Figure 1. This figure illustrates the training pipeline for the Chagas disease classification model. The teacher model (A), a
generalized multi-objective ECG model, generates pseudo-labels for the student models. The student models (B) are then
trained using these pseudo-labels, enabling them to specialize in classifying specific ECG pathologies, as well as Chagas
disease.

Table 2. Performance metrics for the challenge.

Metric Local Validation Validation Test
Challenge Score 0.558 0.458 -
AUROC 0.847 - -
AUPRC 0.499 - -

vascular disorders, such as conduction abnormalities, ar-
rhythmias, bundle branch blocks, fascicular blocks, and
ventricular ectopy. This approach reflects the reasoning of
a cardiologist, who begins by evaluating prevalent ECG
pathologies before forming a diagnostic hypothesis. To
this end, we utilized publicly available datasets to train
generalized multi-objective ECG models. The classifica-
tion outputs for 28 pathologies from these models were
then input into logistic regression.

However, during the validation phase, we discovered
that training a student model to distill knowledge from
a generalized teacher model resulted in significantly im-
proved challenge scores compared to the naive approach

of simulating the clinician’s decision-making process by
combining individual clinical findings. Consequently, we
adopted the teacher-student framework as our preferred so-
lution.

Building on this, we employed relatively straightfor-
ward techniques inspired by our solution from the 2021
challenge. We implemented various data augmentations to
simulate common artifacts encountered during ECG mea-
surements, including channel dropouts, impulse noise, and
channel saturation. To minimize variance during model
training, we submitted the locally pretrained model (after
12 epochs) and subsequently continued training for one ad-
ditional epoch in the submission cloud for each ensemble
student model.

5. Conclusion

In this work, we presented a deep learning approach for
estimating the probability of Chagas disease based on ECG
recordings. Our method was built using a teacher–student
architecture, combined with extensive data augmentation



and an ensemble of models trained using 5-fold cross-
validation. These steps contributed to improved robustness
and generalization of the model. The proposed solution
achieved XYth place in the 2025 Challenge, with an over-
all score of 0.458, demonstrating the effectiveness of the
designed pipeline in detecting Chagas disease from ECG
data.
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