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Abstract 

Electrocardiogram (ECG) lead reduction and signal 

reconstruction are critical for enabling compact, 

wearable cardiac monitoring systems. This study builds 

on years of foundational research by systematically 

evaluating various lead selection protocols to determine 

the most effective subset of leads for reconstructing a full 

12-lead ECG. 

Unlike previous studies that often conflate lead 

selection with reconstruction techniques, this work 

decouples the two by applying a standardized linear 

transformation method across all protocols. Among the 

evaluated approaches, the protocol proposed by Finlay et 

al. demonstrated the highest performance, achieving a 

correlation coefficient of 0.93 and the lowest RMSE of 

0.10mV. Three protocols consistently identified the same 

optimal lead set (III, aVR, and V3) highlighting its 

reliability. These three leads offer strong spatial diversity 

and high correlation with the remaining ECG signals, 

making them highly effective for signal reconstruction.  

The findings have practical implications for the 

development of efficient and cost-effective wearable ECG 

devices. By using a standardized, evidence-based lead 

subset, even simple reconstruction models can achieve 

high performance, reducing the need for complex 

algorithms and enabling scalable health technology 

solutions. 

 

 

1. Introduction 

Electrocardiogram (ECG) reconstruction is the 

synthesis of ECG leads from a recorded set of leads [1]. 

In the context of 12-lead ECG systems, this becomes 

particularly important in cases where some leads are 

corrupted by noise, omitted, or entirely unavailable. This 

is also relevant in telemedicine and mobile health 

applications, where reduced lead sets are often employed 

to simplify data acquisition and enhance user comfort. By 

enabling the recovery of missing leads, ECG 

reconstruction supports more accurate diagnosis, 

monitoring, and prognosis, even in resource-constrained 

or remote settings. 

Numerous studies have shown promising results in 

ECG reconstruction; however, they frequently employ 

different sets of recorded leads as input to their 

reconstruction models [1]. Although various input lead 

combinations have demonstrated dependable 

performance, it is evident that the selection of input leads 

plays a significant role in determining the effectiveness of 

the reconstruction model. Subtle design choices, such as 

which leads are used as input, can have considerable 

impact on the performance of the model [1, 2]. 

While several influential studies have attempted to 

identify optimal lead sets for reconstruction, these 

methods often differ in both design and evaluation criteria 

[3-5]. To fairly compare their effectiveness, these 

approaches must be tested on a common dataset using a 

consistent reconstruction model. This paper adopts linear 

regression (due to its simplicity and transparency) to 

evaluate six lead selection protocols, with the goal of 

identifying the most effective input lead set for ECG 

reconstruction. 

 

2. Method 

2.1. Dataset 

The dataset used in this study consists of 1,000 ECG 

records, randomly selected from the CODE-15% dataset 

[6] based on specific inclusion criteria detailed in the 

accompanying metadata. Selection was restricted to 

recordings from unique patients, each classified as 

normal, with no documented cardiac conditions and no 

missing leads. 

After selection, all ECG signals were standardized to a 

duration of 10 seconds and uniformly resampled to 500 

Hz. Preprocessing was performed using the ECGdeli 

MATLAB toolbox [7], which included denoising, and 

baseline extraction. Denoising was conducted using 

standard filtering techniques with the following 

parameters: a high-pass filter at 0.3 Hz to remove baseline 

wander, a low-pass filter at 120 Hz to eliminate high-

frequency noise, and a notch filter at 60 Hz to suppress 

power line interference. 



 

2.2. Pipeline 

The reconstruction pipeline for testing every protocol is 

illustrated in Figure 1. Each protocol was applied to the 

complete dataset to determine a hierarchy of leads based 

on its selection criteria. The top three leads identified by 

each lead selection protocol are used as inputs to a linear 

regression model, which reconstructs the remaining nine 

leads. The decision to use three input leads is based on 

the findings of Schreck, Tricarico, Frank, Thielen, 

Chhibber, Brotea and Leber [8], who demonstrated that 

three leads can capture approximately 99% of the 

information contained in a standard 12-lead ECG. 

𝑌 = 𝑋𝐴 + 𝐶 … 𝑒𝑞𝑛1 

𝑤ℎ𝑒𝑟𝑒: 𝐴 =  [

𝑎11 ⋯ 𝑎19

⋮ ⋱ ⋮
𝑎31 ⋯ 𝑎39

] 

𝑦 = [

𝑦1
𝑦2

⋮
𝑦9

] , 𝑥 = [𝑥1 𝑥2 𝑥3] 

𝑤ℎ𝑒𝑟𝑒: 𝑌 = 9 𝑏𝑦 1 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑋 = 1 𝑏𝑦 3 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝐴 = 3 𝑏𝑦 9 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡𝑠  
𝐶 = 1 𝑏𝑦 9 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

 

It is important to note that while the original studies 

employed various reconstruction techniques, linear 

transformation (eqn1) is used consistently throughout this 

study. This uniform approach allows for a controlled 

evaluation of the impact of different lead selection 

protocols, ensuring methodological consistency and 

isolating the influence of lead choice on reconstruction 

performance. 

Moreover, the protocols evaluated in this study were 

originally developed for identifying reduced lead sets in 

body surface potential mapping (BSPM). Due to their 

demonstrated effectiveness in that context, they are 

adapted here for application in 12-lead ECG 

reconstruction. 

Each protocol will be assessed by comparing the 

synthesised leads (generated using the top three leads 

recommended by the protocol) to the original recorded 

leads. The evaluation was conducted using two key 

performance metrics: correlation coefficient and root 

mean square error (RMSE). These metrics provide a 

comprehensive assessment of both the morphological 

similarity and amplitude accuracy of the reconstructed 

signals. 

To ensure robust and reproducible evaluation, each 

lead selection protocol was assessed using ten-fold cross-

validation. This consistent validation strategy provided a 

fair comparison across all experiments and minimized the 

risk of overfitting. 

 

 
Figure 1. Pipeline for the testing each selection protocol. 

The top three selected leads are inputs and the remining 

nine are outputs. 

 

2.2.1 Protocol 1 

This protocol establishes lead hierarchy using a cross-

correlation approach. Each lead is correlated with every 

other lead (excluding self-correlation to prevent 

artificially inflating the influence of any single lead). The 

average correlation value for each lead is then computed 

(eqn2), and the leads are ranked based on these averages, 

with higher average correlations indicating greater 

relevance.  

𝜌𝑗̅ =
1

𝑛 − 1
∑ 𝜌𝑖𝑗

𝑛

𝑖=1
𝑖≠𝑗

… 𝑒𝑞𝑛2 

𝑤ℎ𝑒𝑟𝑒: 
𝜌𝑗̅ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑒𝑎𝑑 𝑗 𝑡𝑜 𝑎𝑙𝑙 𝑙𝑒𝑎𝑑𝑠 

𝜌𝑖𝑗 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑒𝑎𝑑 𝑖 𝑡𝑜 𝑙𝑒𝑎𝑑 𝑗 

𝑗 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑙𝑒𝑎𝑑 𝑎𝑡 𝑎𝑛𝑦 𝑔𝑖𝑣𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡𝑖𝑚𝑒 

𝑖 = 𝑜𝑡ℎ𝑒𝑟 𝑙𝑒𝑎𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑 𝑠𝑒𝑡 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑒𝑎𝑑𝑠 𝑖𝑛 𝑙𝑒𝑎𝑑 𝑠𝑒𝑡 

 

2.2.2 Protocol 2 

This protocol is based on the methodology proposed 

by Lux, Smith, Wyatt and Abildskov [3]. It is designed to 

quantify the information index of each lead relative to all 

other leads, as defined in eqn3. Once the information 

index (𝐼𝑗) is calculated for each lead, the three leads with 

the highest 𝐼𝑗 values are selected for the reconstruction 

task. These leads are considered to carry the most 

comprehensive information about the remaining ECG 

signals. 

𝐼𝑗 = ∑ 𝜎𝑖
2𝜌𝑖𝑗

2

𝑛

𝑖=1

… 𝑒𝑞𝑛3 

𝑤ℎ𝑒𝑟𝑒: 𝐼𝑗 = 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑙𝑒𝑎𝑑 𝑗 

𝜎𝑖 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑 𝑖 
 

2.2.3 Protocol 3, 4, 5 

These protocols are based on the methods proposed by 

Finlay, Nugent, Donnelly, Lux, McCullagh and Black [4]. 

They operate by iteratively identifying the most 

informative ECG leads until all leads have been ranked, 

leaving only one unranked. The process begins by using 

each lead individually to reconstruct the remaining leads 

through linear transformation. A performance metric 



(correlation, RMSE, or a combined multi-objective 

criterion (MOC)) is then applied to evaluate and select the 

most informative lead. 

In subsequent iterations, the best-performing lead from 

the previous step is combined with each of the remaining 

unranked leads to reconstruct the others. The evaluation 

metric is reapplied to determine the next most informative 

lead. This iterative process continues until all leads have 

been ranked based on their relative informativeness. 

Protocol 3 uses correlation as the evaluation metric, 

selecting leads with the highest average correlation as the 

most informative. Protocol 4 uses RMSE, ranking leads 

with the lowest average error as most important. Protocol 

5 MOC that integrates both correlation and RMSE into a 

unified score, where a lower MOC value indicates a 

better-performing lead. The method for calculating MOC 

is detailed in eqn4. 

𝑀𝑂𝐶𝐽 = 𝑟𝑎𝑛𝑘𝜌(𝑗) + 𝑟𝑎𝑛𝑘𝑅𝑀𝑆𝐸(𝑗) … 𝑒𝑞𝑛4 

𝑤ℎ𝑒𝑟𝑒: 
𝑟𝑎𝑛𝑘𝜌(𝑗) = 𝑟𝑎𝑛𝑘 𝑜𝑓 𝑙𝑒𝑎𝑑 𝑗 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

(1 =  ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

𝑟𝑎𝑛𝑘𝑅𝑀𝑆𝐸(𝑗) = 𝑟𝑎𝑛𝑘 𝑜𝑓 𝑙𝑒𝑎𝑑 𝑗 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑅𝑀𝑆𝐸 

(1 =  𝑙𝑜𝑤𝑒𝑠𝑡 𝑒𝑟𝑟𝑜𝑟) 

 

2.2.4 Protocol 6 

This protocol is based on the methodology proposed 

by Barr, Spach and Herman-Giddens [5]. It utilizes 

principal component analysis (PCA) to derive principal 

components from the ECG signals and ranks the leads 

according to their contributions to these components. 

While the original study employed 30 principal 

components due to its use of a 150-lead body surface 

potential map (BSPM), this study limits the analysis to 

the top 3 principal components, aligning with the use of a 

standard 12-lead ECG dataset. 

Once the top 3 principal components are identified, the 

contribution of each lead to these components is 

measured and summed, as described in eqn5. The three 

leads with the highest cumulative contribution scores are 

then selected as the input leads for reconstruction under 

this protocol. 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑗 = ∑|𝐺𝑘,𝑗|

𝑁

𝑘=1

… 𝑒𝑞𝑛5 

𝑤ℎ𝑒𝑟𝑒: 
𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑗 = 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑙𝑒𝑎𝑑 𝑗 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

𝑘 = 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑏𝑒𝑖𝑛𝑔 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑 

𝐺𝑘,𝑗 = 𝑡ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑙𝑒𝑎𝑑 𝑗 𝑡𝑜 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑘 

 

3. Results 

The results of this study demonstrate that Protocols 3, 

4, and 5 yielded the highest performance across metrics, 

as shown in Table 1. These protocols, which use 

correlation, RMSE, and MOC, all identified a similar 

optimal lead set: III, aVR, and V3. This input lead 

combination proved most effective in reconstructing the 

remaining ECG leads. 

This finding aligns closely with the work of Butchy, 

Jain, Leasure, Covalesky and Mintz [9], who concluded 

that two limb leads and lead V3 offer the best coverage 

for full 12-lead ECG reconstruction. Their results 

emphasized the value of combining spatially diverse leads 

with high correlation to the rest of the ECG. 

 

Table 1. Average correlation (r) and RMSE in mV of the 

synthesized leads against the original. The leads are based 

on the hierarchy chosen by the protocols investigated. 

“std” is the standard deviation of the metric to its left. 

Protocol Top 3 Leads r std RMSE std 

1 V4, V5, II 0.74 0.28 0.15 0.14 

2 V1, V6, aVL 0.83 0.22 0.16 0.16 

3 aVR, III, V3 0.93 0.11 0.10 0.13 

4 aVR, III, V3 0.93 0.11 0.10 0.13 

5 aVR, III, V3 0.93 0.11 0.10 0.13 

6 V3, V2, II 0.76 0.25 0.13 0.14 

 

4. Discussion and Conclusion 

The results indicate that the approach proposed by 

Finlay, Nugent, Donnelly, Lux, McCullagh and Black [4] 

is the most effective for lead selection, demonstrating the 

highest correlation and lowest RMSE among the 

evaluated methods. This performance may be attributed 

to the protocol’s emphasis on correlation and RMSE as 

the primary evaluation metrics. The findings further 

reveal that two limb leads, along with precordial lead V3 

(Figure 2), serve as the most suitable input leads for 

signal reconstruction compared to the configurations 

recommended by alternative protocols. 

 

 
Figure 2. The locations of the electrodes of a wearable 

ECG device that captures the input lead set recommended 

from the findings. 



 

This study builds on years of foundational research in 

ECG lead reduction and signal reconstruction, aiming to 

advance the field by identifying the most effective leads 

for reconstructing a full 12-lead ECG. Unlike prior 

studies that often entangle lead selection with the 

reconstruction technique itself, this work deliberately 

decouples the two processes. By standardizing the 

reconstruction method (using linear transformation across 

all experiments) it isolates and evaluates the true impact 

of lead choice. The goal is to provide a clear, evidence-

based recommendation for the optimal subset of leads to 

be used in ECG reconstruction, regardless of the model 

employed. 

This standardisation and selection of lead set has 

significant implications for the design of wearable ECG 

devices. In the absence of a highly specialized clinical 

requirement, adopting a standard lead set (as 

recommended by the findings of this study and shown in 

Figure 2) can maximize efficiency and accuracy across 

applications. Furthermore, with a more informative and 

effective lead subset, even simple reconstruction models 

can achieve strong performance, reducing the need for 

complex, resource-intensive algorithms. This, in turn, 

simplifies the architecture of embedded systems, leading 

to reductions in both design complexity and 

manufacturing cost, which are key considerations in the 

development of scalable, affordable wearable health 

technology. 

It is also important to acknowledge the limitations of 

this study. The analysis was conducted using a single 

dataset, specifically the CODE-15% dataset, which is 

distinct from the datasets originally used by the designers 

of the evaluated lead selection protocols. Additionally, 

the study focused exclusively on ECGs classified as 

"normal." While this ensures controlled evaluation, it 

limits the immediate applicability of the results to broader 

clinical contexts. 

To enhance the generalisability and clinical relevance 

of the recommended lead set, future work should involve 

testing on multiple datasets that reflect diverse patient 

populations, including those with various cardiac 

abnormalities. It would also be valuable to validate the 

proposed lead set using non-linear reconstruction models, 

such as deep neural networks or other advanced machine 

learning techniques. This would help assess whether the 

lead set maintains its effectiveness across a wider range 

of reconstruction strategies and real-world conditions, 

ultimately supporting its adoption in both research and 

clinical practice. 
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